미적분 예제

Trouver la dérivée de Third 3x^5+4x^4-18x^2+6x
단계 1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.3
을 곱합니다.
단계 1.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.3.3
을 곱합니다.
단계 1.4
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.4.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.4.3
을 곱합니다.
단계 1.5
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.5.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.5.3
을 곱합니다.
단계 2
2차 도함수를 구합니다
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 2.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.2.3
을 곱합니다.
단계 2.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3.3
을 곱합니다.
단계 2.4
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.4.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.4.3
을 곱합니다.
단계 2.5
상수의 미분 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 2.5.2
에 더합니다.
단계 3
3차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 3.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.2.3
을 곱합니다.
단계 3.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.3.3
을 곱합니다.
단계 3.4
상수의 미분 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 3.4.2
에 더합니다.