문제를 입력하십시오...
미적분 예제
,
단계 1
단계 1.1
에 대해 풉니다.
단계 1.1.1
방정식의 양변에서 를 뺍니다.
단계 1.1.2
의 각 항을 로 나누고 식을 간단히 합니다.
단계 1.1.2.1
의 각 항을 로 나눕니다.
단계 1.1.2.2
좌변을 간단히 합니다.
단계 1.1.2.2.1
의 공약수로 약분합니다.
단계 1.1.2.2.1.1
공약수로 약분합니다.
단계 1.1.2.2.1.2
수식을 다시 씁니다.
단계 1.1.2.2.2
의 공약수로 약분합니다.
단계 1.1.2.2.2.1
공약수로 약분합니다.
단계 1.1.2.2.2.2
을 로 나눕니다.
단계 1.1.2.3
우변을 간단히 합니다.
단계 1.1.2.3.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.2
인수를 다시 묶습니다.
단계 1.3
양변에 을 곱합니다.
단계 1.4
간단히 합니다.
단계 1.4.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 1.4.2
에 을 곱합니다.
단계 1.4.3
의 공약수로 약분합니다.
단계 1.4.3.1
에서 를 인수분해합니다.
단계 1.4.3.2
에서 를 인수분해합니다.
단계 1.4.3.3
공약수로 약분합니다.
단계 1.4.3.4
수식을 다시 씁니다.
단계 1.5
식을 다시 씁니다.
단계 2
단계 2.1
각 변의 적분을 구합니다.
단계 2.2
멱의 법칙에 의해 를 에 대해 적분하면 가 됩니다.
단계 2.3
우변을 적분합니다.
단계 2.3.1
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 2.3.2
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 2.3.3
에 을 곱합니다.
단계 2.3.4
를 에 대해 적분하면 입니다.
단계 2.3.5
간단히 합니다.
단계 2.4
우변에 적분 상수를 로 묶습니다.
단계 3
단계 3.1
방정식의 양변에 을 곱합니다.
단계 3.2
방정식의 양변을 간단히 정리합니다.
단계 3.2.1
좌변을 간단히 합니다.
단계 3.2.1.1
을 간단히 합니다.
단계 3.2.1.1.1
와 을 묶습니다.
단계 3.2.1.1.2
의 공약수로 약분합니다.
단계 3.2.1.1.2.1
공약수로 약분합니다.
단계 3.2.1.1.2.2
수식을 다시 씁니다.
단계 3.2.2
우변을 간단히 합니다.
단계 3.2.2.1
을 간단히 합니다.
단계 3.2.2.1.1
분배 법칙을 적용합니다.
단계 3.2.2.1.2
에 을 곱합니다.
단계 3.3
를 로그 안으로 옮겨 을 간단히 합니다.
단계 3.4
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 3.5
짝수 거듭제곱을 갖는 멱법은 항상 양수이기 때문에 에서 절댓값을 제거합니다.
단계 3.6
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 3.6.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 3.6.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 3.6.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 4
적분 상수를 간단히 합니다.
단계 5
가 초기 조건 에서 양수이므로 만 고려하여 를 구합니다. 에 를 대입하고 에 를 대입합니다.
단계 6
단계 6.1
로 방정식을 다시 씁니다.
단계 6.2
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 제곱합니다.
단계 6.3
방정식의 각 변을 간단히 합니다.
단계 6.3.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 6.3.2
좌변을 간단히 합니다.
단계 6.3.2.1
을 간단히 합니다.
단계 6.3.2.1.1
의 지수를 곱합니다.
단계 6.3.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 6.3.2.1.1.2
의 공약수로 약분합니다.
단계 6.3.2.1.1.2.1
공약수로 약분합니다.
단계 6.3.2.1.1.2.2
수식을 다시 씁니다.
단계 6.3.2.1.2
를 승 합니다.
단계 6.3.2.1.3
간단히 합니다.
단계 6.3.3
우변을 간단히 합니다.
단계 6.3.3.1
1의 모든 거듭제곱은 1입니다.
단계 6.4
방정식의 양변에 를 더합니다.
단계 7
단계 7.1
에 를 대입합니다.