미적분 예제

Solve the Differential Equation (dy)/(dx)=(x^2-1)/(y^2+1)
단계 1
변수를 분리합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
양변에 을 곱합니다.
단계 1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1.1
로 바꿔 씁니다.
단계 1.2.1.2
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 1.2.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.1
공약수로 약분합니다.
단계 1.2.2.2
수식을 다시 씁니다.
단계 1.2.3
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.1
분배 법칙을 적용합니다.
단계 1.2.3.2
분배 법칙을 적용합니다.
단계 1.2.3.3
분배 법칙을 적용합니다.
단계 1.2.4
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.4.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.4.1.1
을 곱합니다.
단계 1.2.4.1.2
의 왼쪽으로 이동하기
단계 1.2.4.1.3
로 바꿔 씁니다.
단계 1.2.4.1.4
을 곱합니다.
단계 1.2.4.1.5
을 곱합니다.
단계 1.2.4.2
에 더합니다.
단계 1.2.4.3
에 더합니다.
단계 1.3
식을 다시 씁니다.
단계 2
양변을 적분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
각 변의 적분을 구합니다.
단계 2.2
좌변을 적분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 2.2.2
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 2.2.3
상수 규칙을 적용합니다.
단계 2.2.4
간단히 합니다.
단계 2.3
우변을 적분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 2.3.2
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 2.3.3
상수 규칙을 적용합니다.
단계 2.3.4
간단히 합니다.
단계 2.4
우변에 적분 상수를 로 묶습니다.