미적분 예제

Solve the Differential Equation (d^2y)/(dx^2)+4y=cos(2x)
단계 1
모든 해는 형식인 것으로 가정합니다.
단계 2
에 대한 특성 방정식을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
1차 도함수를 구합니다.
단계 2.2
2차 도함수를 구합니다
단계 2.3
미분 방정식에 대입합니다.
단계 2.4
로 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
에서 를 인수분해합니다.
단계 2.4.2
에서 를 인수분해합니다.
단계 2.4.3
에서 를 인수분해합니다.
단계 2.5
지수는 절대 0이 될 수 없으므로 양쪽을 으로 나눕니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
배각 공식을 사용하여 로 바꿉니다.
단계 3.2
방정식의 양변에서 를 뺍니다.
단계 3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
에서 을 뺍니다.
단계 3.4
에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 3.4.2
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.2.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 3.4.2.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 3.4.2.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 4
의 구한 값 두 개를 사용하여 두 개의 해를 구성할 수 있습니다.
단계 5
중첩 원리에 의해 일반해는 2계 동차 선형 미분 방정식에 대한 두 해의 선형 결합입니다.