미적분 예제

Solve the Differential Equation (3dy)/(dx)-18x=-6xy
단계 1
변수를 분리합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
을 인수분해합니다.
단계 1.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
방정식의 양변에 를 더합니다.
단계 1.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.1
의 각 항을 로 나눕니다.
단계 1.2.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.2.1.1
공약수로 약분합니다.
단계 1.2.2.2.1.2
로 나눕니다.
단계 1.2.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.3.1.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.3.1.1.1
에서 를 인수분해합니다.
단계 1.2.2.3.1.1.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.3.1.1.2.1
에서 를 인수분해합니다.
단계 1.2.2.3.1.1.2.2
공약수로 약분합니다.
단계 1.2.2.3.1.1.2.3
수식을 다시 씁니다.
단계 1.2.2.3.1.1.2.4
로 나눕니다.
단계 1.2.2.3.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.3.1.2.1
에서 를 인수분해합니다.
단계 1.2.2.3.1.2.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.3.1.2.2.1
에서 를 인수분해합니다.
단계 1.2.2.3.1.2.2.2
공약수로 약분합니다.
단계 1.2.2.3.1.2.2.3
수식을 다시 씁니다.
단계 1.2.2.3.1.2.2.4
로 나눕니다.
단계 1.3
인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1.1
에서 를 인수분해합니다.
단계 1.3.1.2
에서 를 인수분해합니다.
단계 1.3.1.3
에서 를 인수분해합니다.
단계 1.3.2
로 바꿔 씁니다.
단계 1.4
양변에 을 곱합니다.
단계 1.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 1.5.2
을 묶습니다.
단계 1.5.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.3.1
에서 를 인수분해합니다.
단계 1.5.3.2
공약수로 약분합니다.
단계 1.5.3.3
수식을 다시 씁니다.
단계 1.6
식을 다시 씁니다.
단계 2
양변을 적분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
각 변의 적분을 구합니다.
단계 2.2
좌변을 적분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1.1
다시 씁니다.
단계 2.2.1.1.2
로 나눕니다.
단계 2.2.1.2
를 사용해 문제를 바꿔 씁니다.
단계 2.2.2
분수를 여러 개의 분수로 나눕니다.
단계 2.2.3
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 2.2.4
에 대해 적분하면 입니다.
단계 2.2.5
간단히 합니다.
단계 2.2.6
를 모두 로 바꿉니다.
단계 2.3
우변을 적분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 2.3.2
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 2.3.3
답을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.3.1
로 바꿔 씁니다.
단계 2.3.3.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.3.2.1
을 묶습니다.
단계 2.3.3.2.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.3.2.2.1
공약수로 약분합니다.
단계 2.3.3.2.2.2
수식을 다시 씁니다.
단계 2.3.3.2.3
을 곱합니다.
단계 2.4
우변에 적분 상수를 로 묶습니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
의 각 항을 로 나눕니다.
단계 3.1.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.2.1
두 음수를 나누면 양수가 나옵니다.
단계 3.1.2.2
로 나눕니다.
단계 3.1.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.3.1.1
의 분모에서 -1을 옮깁니다.
단계 3.1.3.1.2
로 바꿔 씁니다.
단계 3.1.3.1.3
의 분모에서 -1을 옮깁니다.
단계 3.1.3.1.4
로 바꿔 씁니다.
단계 3.2
을 구하기 위해 로그의 성질을 이용하여 방정식을 다시 씁니다.
단계 3.3
로그의 정의를 이용하여 를 지수 형태로 다시 씁니다. 만약 가 양의 실수와 이면, 와 같습니다.
단계 3.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1
로 방정식을 다시 씁니다.
단계 3.4.2
절대값의 항을 제거합니다. 이므로 방정식 우변에 이 생깁니다.
단계 3.4.3
방정식의 양변에서 를 뺍니다.
단계 3.4.4
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.4.1
의 각 항을 로 나눕니다.
단계 3.4.4.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.4.2.1
두 음수를 나누면 양수가 나옵니다.
단계 3.4.4.2.2
로 나눕니다.
단계 3.4.4.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.4.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.4.3.1.1
의 분모에서 -1을 옮깁니다.
단계 3.4.4.3.1.2
로 바꿔 씁니다.
단계 3.4.4.3.1.3
로 나눕니다.
단계 4
상수 항을 하나로 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
적분 상수를 간단히 합니다.
단계 4.2
로 바꿔 씁니다.
단계 4.3
을 다시 정렬합니다.
단계 4.4
양 또는 음의 상수를 결합합니다.