문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
에 대해 을 미분합니다.
단계 1.2
미분합니다.
단계 1.2.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.2.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.3
의 값을 구합니다.
단계 1.3.1
, 일 때 는 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 1.3.2
을 로 바꿔 씁니다.
단계 1.3.3
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.3.4
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 1.3.5
에 을 곱합니다.
단계 1.3.6
에 을 곱합니다.
단계 1.3.7
에 을 곱합니다.
단계 1.3.8
를 에 더합니다.
단계 1.4
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 1.5
항을 다시 정렬합니다.
단계 2
단계 2.1
에 대해 을 미분합니다.
단계 2.2
미분합니다.
단계 2.2.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 2.2.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3
의 값을 구합니다.
단계 2.3.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.3.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3.3
에 을 곱합니다.
단계 2.4
항을 다시 정렬합니다.
단계 3
단계 3.1
에 을, 에 을 대입합니다.
단계 3.2
양변이 동일함을 보였으므로, 이 방정식은 항등식입니다.
은 항등식입니다.
은 항등식입니다.
단계 4
집합 을 의 적분과 같게 둡니다.
단계 5
단계 5.1
상수 규칙을 적용합니다.
단계 6
의 적분에 적분 상수가 있으므로 에 을 대입할 수 있습니다.
단계 7
으로 둡니다.
단계 8
단계 8.1
에 대해 을 미분합니다.
단계 8.2
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 8.3
의 값을 구합니다.
단계 8.3.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 8.3.2
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 8.3.3
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 8.3.4
, 일 때 는 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 8.3.5
을 로 바꿔 씁니다.
단계 8.3.6
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 8.3.7
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 8.3.8
에 을 곱합니다.
단계 8.3.9
에 을 곱합니다.
단계 8.3.10
에 을 곱합니다.
단계 8.3.11
를 에 더합니다.
단계 8.4
의 도함수가 인 함수 규칙을 사용하여 미분합니다.
단계 8.5
간단히 합니다.
단계 8.5.1
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 8.5.2
분배 법칙을 적용합니다.
단계 8.5.3
항을 묶습니다.
단계 8.5.3.1
에 을 곱합니다.
단계 8.5.3.2
와 을 묶습니다.
단계 8.5.4
항을 다시 정렬합니다.
단계 9
단계 9.1
변수를 포함한 모든 항을 방정식의 좌변으로 옮깁니다.
단계 9.1.1
방정식의 양변에서 를 뺍니다.
단계 9.1.2
방정식의 양변에서 를 뺍니다.
단계 9.1.3
의 반대 항을 묶습니다.
단계 9.1.3.1
에서 을 뺍니다.
단계 9.1.3.2
를 에 더합니다.
단계 9.1.3.3
에서 을 뺍니다.
단계 9.1.3.4
를 에 더합니다.
단계 10
단계 10.1
의 양쪽을 모두 적분합니다.
단계 10.2
의 값을 구합니다.
단계 10.3
를 에 대해 적분하면 입니다.
단계 10.4
를 에 더합니다.
단계 11
에서 을 대입합니다.
단계 12
단계 12.1
분배 법칙을 적용합니다.
단계 12.2
와 을 묶습니다.