문제를 입력하십시오...
미적분 예제
단계 1
방정식의 양변에서 를 뺍니다.
단계 2
단계 2.1
각 변의 적분을 구합니다.
단계 2.2
좌변을 적분합니다.
단계 2.2.1
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 2.2.2
멱의 법칙에 의해 를 에 대해 적분하면 가 됩니다.
단계 2.2.3
을 로 바꿔 씁니다.
단계 2.3
우변을 적분합니다.
단계 2.3.1
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 2.3.2
를 에 대해 적분하면 입니다.
단계 2.3.3
간단히 합니다.
단계 2.4
우변에 적분 상수를 로 묶습니다.
단계 3
단계 3.1
방정식의 양변에 을 곱합니다.
단계 3.2
방정식의 양변을 간단히 정리합니다.
단계 3.2.1
좌변을 간단히 합니다.
단계 3.2.1.1
을 간단히 합니다.
단계 3.2.1.1.1
와 을 묶습니다.
단계 3.2.1.1.2
의 공약수로 약분합니다.
단계 3.2.1.1.2.1
의 마이너스 부호를 분자로 이동합니다.
단계 3.2.1.1.2.2
에서 를 인수분해합니다.
단계 3.2.1.1.2.3
공약수로 약분합니다.
단계 3.2.1.1.2.4
수식을 다시 씁니다.
단계 3.2.1.1.3
곱합니다.
단계 3.2.1.1.3.1
에 을 곱합니다.
단계 3.2.1.1.3.2
에 을 곱합니다.
단계 3.2.2
우변을 간단히 합니다.
단계 3.2.2.1
을 간단히 합니다.
단계 3.2.2.1.1
분배 법칙을 적용합니다.
단계 3.2.2.1.2
에 을 곱합니다.
단계 3.3
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 3.4
에서 를 인수분해합니다.
단계 3.4.1
에서 를 인수분해합니다.
단계 3.4.2
에서 를 인수분해합니다.
단계 3.4.3
에서 를 인수분해합니다.
단계 3.5
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 3.5.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 3.5.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 3.5.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 4
적분 상수를 간단히 합니다.