미적분 예제

Solve the Differential Equation (2dy)/(dx)=(y(x+1))/x
단계 1
변수를 분리합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
을 인수분해합니다.
단계 1.2
인수를 다시 묶습니다.
단계 1.3
양변에 을 곱합니다.
단계 1.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
공약수로 약분합니다.
단계 1.4.2
수식을 다시 씁니다.
단계 1.5
불필요한 괄호를 제거합니다.
단계 1.6
식을 다시 씁니다.
단계 2
양변을 적분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
각 변의 적분을 구합니다.
단계 2.2
좌변을 적분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
을 묶습니다.
단계 2.2.2
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 2.2.3
에 대해 적분하면 입니다.
단계 2.2.4
간단히 합니다.
단계 2.3
우변을 적분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
분수를 여러 개의 분수로 나눕니다.
단계 2.3.2
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 2.3.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.3.1
공약수로 약분합니다.
단계 2.3.3.2
수식을 다시 씁니다.
단계 2.3.4
상수 규칙을 적용합니다.
단계 2.3.5
에 대해 적분하면 입니다.
단계 2.3.6
간단히 합니다.
단계 2.4
우변에 적분 상수를 로 묶습니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
로그를 포함하고 있는 모든 항을 방정식의 좌변으로 옮깁니다.
단계 3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1.1
를 로그 안으로 옮겨 을 간단히 합니다.
단계 3.2.1.1.2
짝수 거듭제곱을 갖는 멱법은 항상 양수이기 때문에 에서 절댓값을 제거합니다.
단계 3.2.1.2
로그의 나눗셈의 성질 을 이용합니다.
단계 3.3
을 구하기 위해 로그의 성질을 이용하여 방정식을 다시 씁니다.
단계 3.4
로그의 정의를 이용하여 를 지수 형태로 다시 씁니다. 만약 가 양의 실수와 이면, 와 같습니다.
단계 3.5
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.1
로 방정식을 다시 씁니다.
단계 3.5.2
양변에 을 곱합니다.
단계 3.5.3
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.3.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.3.1.1
공약수로 약분합니다.
단계 3.5.3.1.2
수식을 다시 씁니다.
단계 3.5.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.4.1
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 3.5.4.2
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.4.2.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 3.5.4.2.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 3.5.4.2.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 4
상수 항을 하나로 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
로 바꿔 씁니다.
단계 4.2
을 다시 정렬합니다.
단계 4.3
로 바꿔 씁니다.
단계 4.4
을 다시 정렬합니다.