문제를 입력하십시오...
기초 수학 예제
단계 1
단계 1.1
에서 를 인수분해합니다.
단계 1.1.1
에서 를 인수분해합니다.
단계 1.1.2
에서 를 인수분해합니다.
단계 1.1.3
에서 를 인수분해합니다.
단계 1.2
에서 를 인수분해합니다.
단계 1.2.1
에서 를 인수분해합니다.
단계 1.2.2
에서 를 인수분해합니다.
단계 1.2.3
에서 를 인수분해합니다.
단계 2
단계 2.1
여러 값의 최소공분모를 구하는 것은 해당 값들의 분모의 최소공배수를 구하는 것과 같습니다.
단계 2.2
최소공배수는 주어진 모든 수로 나누어 떨어지는 가장 작은 양수입니다.
1. 각 수의 소인수를 나열합니다.
2. 각 인수가 해당 수에서 나타나는 횟수만큼 각 인수를 곱합니다.
단계 2.3
숫자 은 자신을 약수로 가지지만 오직 한 개의 양의 약수를 가지므로 소수가 아닙니다.
소수가 아님
단계 2.4
는 , 이외의 인수를 가지지 않습니다.
는 소수입니다
단계 2.5
의 최소공배수는 각 수에 포함된 소인수의 최대 개수만큼 모든 소인수를 곱한 값입니다.
단계 2.6
의 인수는 자신입니다.
는 번 나타납니다.
단계 2.7
의 최소공배수는 각 항에 포함된 인수의 최대 개수만큼 모든 인수를 곱한 결과입니다.
단계 2.8
임의의 숫자 의 최소공배수는 해당 숫자가 인수인 가장 작은 숫자입니다.
단계 3
단계 3.1
의 각 항에 을 곱합니다.
단계 3.2
좌변을 간단히 합니다.
단계 3.2.1
각 항을 간단히 합니다.
단계 3.2.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 3.2.1.2
와 을 묶습니다.
단계 3.2.1.3
의 공약수로 약분합니다.
단계 3.2.1.3.1
공약수로 약분합니다.
단계 3.2.1.3.2
수식을 다시 씁니다.
단계 3.2.1.4
의 공약수로 약분합니다.
단계 3.2.1.4.1
의 마이너스 부호를 분자로 이동합니다.
단계 3.2.1.4.2
공약수로 약분합니다.
단계 3.2.1.4.3
수식을 다시 씁니다.
단계 3.2.2
에서 을 뺍니다.
단계 3.3
우변을 간단히 합니다.
단계 3.3.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 3.3.2
의 공약수로 약분합니다.
단계 3.3.2.1
공약수로 약분합니다.
단계 3.3.2.2
수식을 다시 씁니다.
단계 3.3.3
의 공약수로 약분합니다.
단계 3.3.3.1
공약수로 약분합니다.
단계 3.3.3.2
수식을 다시 씁니다.
단계 4
이므로, 이 방정식은 모든 에 대해 항상 성립합니다.
모든 실수
단계 5
결과값은 다양한 형태로 나타낼 수 있습니다.
모든 실수
구간 표기: