기초 수학 예제

Résoudre pour a 제곱근 ab = 제곱근 a 제곱근 b
단계 1
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 제곱합니다.
단계 2
방정식의 각 변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1.2.1
공약수로 약분합니다.
단계 2.2.1.1.2.2
수식을 다시 씁니다.
단계 2.2.1.2
간단히 합니다.
단계 2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1.1
근호의 곱의 미분 법칙을 사용하여 묶습니다.
단계 2.3.1.2
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2.3.1.2.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.3.1.2.3
을 묶습니다.
단계 2.3.1.2.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1.2.4.1
공약수로 약분합니다.
단계 2.3.1.2.4.2
수식을 다시 씁니다.
단계 2.3.1.2.5
간단히 합니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
을 포함하는 모든 항을 방정식의 좌변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
방정식의 양변에서 를 뺍니다.
단계 3.1.2
에서 을 뺍니다.
단계 3.2
이므로, 이 식은 항상 참입니다.
항상 참
항상 참
단계 4
결과값은 다양한 형태로 나타낼 수 있습니다.
항상 참
구간 표기: