기초 수학 예제

Résoudre pour n 6 n-3+2=1/2 의 세제곱근
단계 1
를 포함하지 않은 모든 항을 방정식의 우변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
방정식의 양변에서 를 뺍니다.
단계 1.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.3
을 묶습니다.
단계 1.4
공통분모를 가진 분자끼리 묶습니다.
단계 1.5
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
을 곱합니다.
단계 1.5.2
에서 을 뺍니다.
단계 1.6
마이너스 부호를 분수 앞으로 보냅니다.
단계 2
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 세제곱합니다.
단계 3
방정식의 각 변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
에 곱의 미분 법칙을 적용합니다.
단계 3.2.1.2
승 합니다.
단계 3.2.1.3
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.3.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.2.1.3.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.3.2.1
공약수로 약분합니다.
단계 3.2.1.3.2.2
수식을 다시 씁니다.
단계 3.2.1.4
간단히 합니다.
단계 3.2.1.5
분배 법칙을 적용합니다.
단계 3.2.1.6
을 곱합니다.
단계 3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1
지수 법칙 을 이용하여 지수를 분배합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1.1
에 곱의 미분 법칙을 적용합니다.
단계 3.3.1.1.2
에 곱의 미분 법칙을 적용합니다.
단계 3.3.1.2
승 합니다.
단계 3.3.1.3
승 합니다.
단계 3.3.1.4
승 합니다.
단계 4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
를 포함하지 않은 모든 항을 방정식의 우변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
방정식의 양변에 를 더합니다.
단계 4.1.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 4.1.3
을 묶습니다.
단계 4.1.4
공통분모를 가진 분자끼리 묶습니다.
단계 4.1.5
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.5.1
을 곱합니다.
단계 4.1.5.2
에 더합니다.
단계 4.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
의 각 항을 로 나눕니다.
단계 4.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1.1
공약수로 약분합니다.
단계 4.2.2.1.2
로 나눕니다.
단계 4.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.3.1
분자에 분모의 역수를 곱합니다.
단계 4.2.3.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.3.2.1
에서 를 인수분해합니다.
단계 4.2.3.2.2
에서 를 인수분해합니다.
단계 4.2.3.2.3
공약수로 약분합니다.
단계 4.2.3.2.4
수식을 다시 씁니다.
단계 4.2.3.3
을 곱합니다.
단계 4.2.3.4
을 곱합니다.
단계 5
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태:
대분수 형식: