대수 예제

그래프 y=4x-x^2
y=4x-x2y=4xx2
단계 1
주어진 포물선의 성질을 알아봅니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
방정식을 꼭짓점 형태로 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
4x-x2을 다시 정렬합니다.
y=-x2+4x
단계 1.1.2
-x2+4x를 완전제곱식 형태로 만듭니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.1
ax2+bx+c 형태를 이용해 a, b, c 값을 구합니다.
a=-1
b=4
c=0
단계 1.1.2.2
포물선 방정식의 꼭짓점 형태를 이용합니다.
a(x+d)2+e
단계 1.1.2.3
d=b2a 공식을 이용하여 d 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.3.1
ab 값을 공식 d=b2a 에 대입합니다.
d=42-1
단계 1.1.2.3.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.3.2.1
42의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.3.2.1.1
4에서 2를 인수분해합니다.
d=222-1
단계 1.1.2.3.2.1.2
2-1의 분모에서 -1을 옮깁니다.
d=-12
d=-12
단계 1.1.2.3.2.2
-12을 곱합니다.
d=-2
d=-2
d=-2
단계 1.1.2.4
e=c-b24a 공식을 이용하여 e 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.4.1
c, b, a 값을 공식 e=c-b24a에 대입합니다.
e=0-424-1
단계 1.1.2.4.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.4.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.4.2.1.1
424의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.4.2.1.1.1
42에서 4를 인수분해합니다.
e=0-444-1
단계 1.1.2.4.2.1.1.2
4-1의 분모에서 -1을 옮깁니다.
e=0-(-14)
e=0-(-14)
단계 1.1.2.4.2.1.2
-(-14) 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.4.2.1.2.1
-14을 곱합니다.
e=0--4
단계 1.1.2.4.2.1.2.2
-1-4을 곱합니다.
e=0+4
e=0+4
e=0+4
단계 1.1.2.4.2.2
04에 더합니다.
e=4
e=4
e=4
단계 1.1.2.5
a, d, e 값을 꼭짓점 형태 -(x-2)2+4에 대입합니다.
-(x-2)2+4
-(x-2)2+4
단계 1.1.3
y를 오른쪽 항과 같다고 놓습니다.
y=-(x-2)2+4
y=-(x-2)2+4
단계 1.2
표준형인 y=a(x-h)2+k를 사용하여 a, h, k의 값을 구합니다
a=-1
h=2
k=4
단계 1.3
a 값이 음수이므로 이 포물선은 아래로 열린 형태입니다.
아래로 열림
단계 1.4
꼭짓점 (h,k) 를 구합니다.
(2,4)
단계 1.5
꼭짓점으로부터 초점까지의 거리인 p 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
다음의 공식을 이용하여 꼭짓점으로부터 포물선의 초점까지의 거리를 구합니다.
14a
단계 1.5.2
a 값을 공식에 대입합니다.
14-1
단계 1.5.3
1-1의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.3.1
1-1(-1)로 바꿔 씁니다.
-1(-1)4-1
단계 1.5.3.2
마이너스 부호를 분수 앞으로 보냅니다.
-14
-14
-14
단계 1.6
초점을 찾습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.6.1
포물선이 위 또는 아래로 열린 경우, 포물선의 초점은 y좌표 kp를 더해서 구할 수 있습니다.
(h,k+p)
단계 1.6.2
알고 있는 값인 h, p, k를 공식에 대입하여 식을 간단히 합니다.
(2,154)
(2,154)
단계 1.7
꼭짓점과 초점을 지나는 직선을 구하여 대칭축을 구합니다.
x=2
단계 1.8
준선을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.8.1
포물선이 위 또는 아래로 열린 경우 포물선의 준선은 꼭짓점의 y좌표 k에서 p를 뺀 값의 수평선입니다.
y=k-p
단계 1.8.2
알고 있는 값인 pk를 공식에 대입하여 식을 간단히 합니다.
y=174
y=174
단계 1.9
포물선의 성질을 이용해 포물선을 분석하고 그래프를 그립니다.
방향: 아래로 열림
꼭짓점: (2,4)
초점: (2,154)
대칭축: x=2
준선: y=174
방향: 아래로 열림
꼭짓점: (2,4)
초점: (2,154)
대칭축: x=2
준선: y=174
단계 2
여러 x 값을 선택하고 식에 대입하여 해당하는 y 값을 구합니다. 꼭짓점 주위의 x 값을 선택해야 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
수식에서 변수 x1을 대입합니다.
f(1)=-(1)2+4(1)
단계 2.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1
1의 모든 거듭제곱은 1입니다.
f(1)=-11+4(1)
단계 2.2.1.2
-11을 곱합니다.
f(1)=-1+4(1)
단계 2.2.1.3
41을 곱합니다.
f(1)=-1+4
f(1)=-1+4
단계 2.2.2
-14에 더합니다.
f(1)=3
단계 2.2.3
최종 답은 3입니다.
3
3
단계 2.3
x=1일 때 y의 값은 3입니다.
y=3
단계 2.4
수식에서 변수 x0을 대입합니다.
f(0)=-(0)2+4(0)
단계 2.5
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1.1
0을 여러 번 거듭제곱해도 0이 나옵니다.
f(0)=-0+4(0)
단계 2.5.1.2
-10을 곱합니다.
f(0)=0+4(0)
단계 2.5.1.3
40을 곱합니다.
f(0)=0+0
f(0)=0+0
단계 2.5.2
00에 더합니다.
f(0)=0
단계 2.5.3
최종 답은 0입니다.
0
0
단계 2.6
x=0일 때 y의 값은 0입니다.
y=0
단계 2.7
수식에서 변수 x3을 대입합니다.
f(3)=-(3)2+4(3)
단계 2.8
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.8.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.8.1.1
32승 합니다.
f(3)=-19+4(3)
단계 2.8.1.2
-19을 곱합니다.
f(3)=-9+4(3)
단계 2.8.1.3
43을 곱합니다.
f(3)=-9+12
f(3)=-9+12
단계 2.8.2
-912에 더합니다.
f(3)=3
단계 2.8.3
최종 답은 3입니다.
3
3
단계 2.9
x=3일 때 y의 값은 3입니다.
y=3
단계 2.10
수식에서 변수 x4을 대입합니다.
f(4)=-(4)2+4(4)
단계 2.11
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.11.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.11.1.1
42승 합니다.
f(4)=-116+4(4)
단계 2.11.1.2
-116을 곱합니다.
f(4)=-16+4(4)
단계 2.11.1.3
44을 곱합니다.
f(4)=-16+16
f(4)=-16+16
단계 2.11.2
-1616에 더합니다.
f(4)=0
단계 2.11.3
최종 답은 0입니다.
0
0
단계 2.12
x=4일 때 y의 값은 0입니다.
y=0
단계 2.13
포물선의 성질과 선택한 점을 이용하여 포물선의 그래프를 그립니다.
xy0013243340
xy0013243340
단계 3
포물선의 성질과 선택한 점을 이용하여 포물선의 그래프를 그립니다.
방향: 아래로 열림
꼭짓점: (2,4)
초점: (2,154)
대칭축: x=2
준선: y=174
xy0013243340
단계 4
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]