대수 예제

그래프 (x^2)/16+(y^2)/4=1
단계 1
우변을 로 만들기 위하여 식의 각 변을 간단히 합니다. 타원 또는 쌍곡선의 표준식의 우변은 입니다.
단계 2
이것은 타원의 형태입니다. 이 형태를 이용하여 타원의 장축과 주축을 따라 중심을 찾는 데 사용되는 값들을 구합니다.
단계 3
이 타원의 값들을 표준형과 맞춰 봅니다. 변수 는 타원의 장축의 반지름을, 는 타원의 단축의 반지름을, 는 원점으로부터의 x축 방향으로 떨어진 거리를, 는 원점으로부터 y축 방향으로 떨어진 거리를 의미합니다.
단계 4
타원의 중심은 형태입니다. 값을 식에 대입합니다.
단계 5
중심으로부터 초점까지의 거리인 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
다음의 공식을 이용하여 중심으로부터 타원의 중점까지의 거리를 구합니다.
단계 5.2
, 값을 공식에 대입합니다.
단계 5.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
승 합니다.
단계 5.3.2
승 합니다.
단계 5.3.3
을 곱합니다.
단계 5.3.4
에서 을 뺍니다.
단계 5.3.5
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.5.1
에서 를 인수분해합니다.
단계 5.3.5.2
로 바꿔 씁니다.
단계 5.3.6
근호 안의 항을 밖으로 빼냅니다.
단계 6
꼭짓점을 찾습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
타원의 첫 번째 꼭짓점은 를 더해서 구할 수 있습니다.
단계 6.2
알고 있는 값인 , , 를 공식에 대입합니다.
단계 6.3
간단히 합니다.
단계 6.4
The second vertex of an ellipse can be found by subtracting from .
단계 6.5
알고 있는 값인 , , 를 공식에 대입합니다.
단계 6.6
간단히 합니다.
단계 6.7
타원에는 꼭짓점이 2개 있습니다.
:
:
:
:
단계 7
초점을 찾습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
타원의 첫 번째 초점은 를 더해 구할 수 있습니다.
단계 7.2
알고 있는 값인 , , 를 공식에 대입합니다.
단계 7.3
간단히 합니다.
단계 7.4
타원의 두 번째 초점은 에서 를 빼서 구할 수 있습니다.
단계 7.5
알고 있는 값인 , , 를 공식에 대입합니다.
단계 7.6
간단히 합니다.
단계 7.7
타원에는 초점이 2개 있습니다.
:
:
:
:
단계 8
이심률을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
다음의 공식을 이용하여 이심률 값을 구합니다.
단계 8.2
, 값을 공식에 대입합니다.
단계 8.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.3.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.3.1.1
승 합니다.
단계 8.3.1.2
승 합니다.
단계 8.3.1.3
을 곱합니다.
단계 8.3.1.4
에서 을 뺍니다.
단계 8.3.1.5
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.3.1.5.1
에서 를 인수분해합니다.
단계 8.3.1.5.2
로 바꿔 씁니다.
단계 8.3.1.6
근호 안의 항을 밖으로 빼냅니다.
단계 8.3.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.3.2.1
에서 를 인수분해합니다.
단계 8.3.2.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.3.2.2.1
에서 를 인수분해합니다.
단계 8.3.2.2.2
공약수로 약분합니다.
단계 8.3.2.2.3
수식을 다시 씁니다.
단계 9
이는 타원을 그리고 분석하는 데 사용되는 중요한 값들입니다.
중심:
:
:
:
:
이심률:
단계 10