문제를 입력하십시오...
대수 예제
(x-7)2(x−7)2
단계 1
이항정리를 이용해 각 항을 구합니다. 이항정리에 의하면 (a+b)n=n∑k=0nCk⋅(an-kbk)(a+b)n=n∑k=0nCk⋅(an−kbk)입니다.
2∑k=02!(2-k)!k!⋅(x)2-k⋅(-7)k2∑k=02!(2−k)!k!⋅(x)2−k⋅(−7)k
단계 2
합을 전개합니다.
2!(2-0)!0!(x)2-0⋅(-7)0+2!(2-1)!1!(x)2-1⋅(-7)1+2!(2-2)!2!(x)2-2⋅(-7)22!(2−0)!0!(x)2−0⋅(−7)0+2!(2−1)!1!(x)2−1⋅(−7)1+2!(2−2)!2!(x)2−2⋅(−7)2
단계 3
전개한 각 항에 대해 지수를 간단히 합니다.
1⋅(x)2⋅(-7)0+2⋅(x)1⋅(-7)1+1⋅(x)0⋅(-7)21⋅(x)2⋅(−7)0+2⋅(x)1⋅(−7)1+1⋅(x)0⋅(−7)2
단계 4
단계 4.1
(x)2(x)2에 11을 곱합니다.
(x)2⋅(-7)0+2⋅(x)1⋅(-7)1+1⋅(x)0⋅(-7)2(x)2⋅(−7)0+2⋅(x)1⋅(−7)1+1⋅(x)0⋅(−7)2
단계 4.2
모든 수의 00승은 11입니다.
x2⋅1+2⋅(x)1⋅(-7)1+1⋅(x)0⋅(-7)2x2⋅1+2⋅(x)1⋅(−7)1+1⋅(x)0⋅(−7)2
단계 4.3
x2x2에 11을 곱합니다.
x2+2⋅(x)1⋅(-7)1+1⋅(x)0⋅(-7)2x2+2⋅(x)1⋅(−7)1+1⋅(x)0⋅(−7)2
단계 4.4
간단히 합니다.
x2+2⋅x⋅(-7)1+1⋅(x)0⋅(-7)2x2+2⋅x⋅(−7)1+1⋅(x)0⋅(−7)2
단계 4.5
지수값을 계산합니다.
x2+2x⋅-7+1⋅(x)0⋅(-7)2x2+2x⋅−7+1⋅(x)0⋅(−7)2
단계 4.6
-7−7에 2을 곱합니다.
x2-14x+1⋅(x)0⋅(-7)2
단계 4.7
(x)0에 1을 곱합니다.
x2-14x+(x)0⋅(-7)2
단계 4.8
모든 수의 0승은 1입니다.
x2-14x+1⋅(-7)2
단계 4.9
(-7)2에 1을 곱합니다.
x2-14x+(-7)2
단계 4.10
-7를 2승 합니다.
x2-14x+49
x2-14x+49