대수 예제

인수분해하기 3x^2+7x+2
3x2+7x+23x2+7x+2
단계 1
ax2+bx+cax2+bx+c 형태의 다항식에 대해 곱이 ac=32=6ac=32=6 이고 합이 b=7b=7 인 두 항의 합으로 중간항을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
7x7x에서 77를 인수분해합니다.
3x2+7(x)+23x2+7(x)+2
단계 1.2
7711 + 66로 다시 씁니다.
3x2+(1+6)x+23x2+(1+6)x+2
단계 1.3
분배 법칙을 적용합니다.
3x2+1x+6x+23x2+1x+6x+2
단계 1.4
xx11을 곱합니다.
3x2+x+6x+23x2+x+6x+2
3x2+x+6x+23x2+x+6x+2
단계 2
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
처음 두 항과 마지막 두 항을 묶습니다.
(3x2+x)+6x+2(3x2+x)+6x+2
단계 2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
x(3x+1)+2(3x+1)x(3x+1)+2(3x+1)
x(3x+1)+2(3x+1)x(3x+1)+2(3x+1)
단계 3
최대공약수 3x+13x+1을 밖으로 빼어 다항식을 인수분해합니다.
(3x+1)(x+2)(3x+1)(x+2)
 [x2  12  π  xdx ]  x2  12  π  xdx