대수 예제

근(영점) 구하기 P(x)=x^4+2x^3+x^2+18x-72
단계 1
와 같다고 둡니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
항을 다시 묶습니다.
단계 2.1.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.1
에서 를 인수분해합니다.
단계 2.1.2.2
에서 를 인수분해합니다.
단계 2.1.2.3
에서 를 인수분해합니다.
단계 2.1.3
로 바꿔 씁니다.
단계 2.1.4
로 정의합니다. 식에 나타나는 모든 로 바꿉니다.
단계 2.1.5
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.5.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 2.1.5.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 2.1.6
를 모두 로 바꿉니다.
단계 2.1.7
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.7.1
에서 를 인수분해합니다.
단계 2.1.7.2
에서 를 인수분해합니다.
단계 2.1.7.3
에서 를 인수분해합니다.
단계 2.1.8
로 정의합니다. 식에 나타나는 모든 로 바꿉니다.
단계 2.1.9
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.9.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 2.1.9.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 2.1.10
인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.10.1
를 모두 로 바꿉니다.
단계 2.1.10.2
불필요한 괄호를 제거합니다.
단계 2.2
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2.3
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
와 같다고 둡니다.
단계 2.3.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1
방정식의 양변에서 를 뺍니다.
단계 2.3.2.2
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 2.3.2.3
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.3.1
로 바꿔 씁니다.
단계 2.3.2.3.2
로 바꿔 씁니다.
단계 2.3.2.3.3
로 바꿔 씁니다.
단계 2.3.2.3.4
로 바꿔 씁니다.
단계 2.3.2.3.5
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 2.3.2.3.6
의 왼쪽으로 이동하기
단계 2.3.2.4
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.4.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 2.3.2.4.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 2.3.2.4.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 2.4
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
와 같다고 둡니다.
단계 2.4.2
방정식의 양변에 를 더합니다.
단계 2.5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
와 같다고 둡니다.
단계 2.5.2
방정식의 양변에서 를 뺍니다.
단계 2.6
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 3