문제를 입력하십시오...
대수 예제
단계 1
단계 1.1
여러 값의 최소공분모를 구하는 것은 해당 값들의 분모의 최소공배수를 구하는 것과 같습니다.
단계 1.2
이 숫자와 변수를 모두 포함하므로, 네 단계에 걸쳐 최소공배수를 구합니다. 숫자, 변수, 복합 변수 부분에 대해 최소공배수를 구한 뒤 해당 값들을 모두 곱합니다.
의 최소공배수를 구하는 단계:
1. 숫자 부분 의 최소공배수를 구합니다.
2. 변수 부분 의 최소공배수를 구합니다.
3. 혼합 변수 부분 의 최소공배수를 구합니다.
4. 각각의 최소공배수를 함께 곱합니다.
단계 1.3
최소공배수는 주어진 모든 수로 나누어 떨어지는 가장 작은 양수입니다.
1. 각 수의 소인수를 나열합니다.
2. 각 인수가 해당 수에서 나타나는 횟수만큼 각 인수를 곱합니다.
단계 1.4
숫자 은 자신을 약수로 가지지만 오직 한 개의 양의 약수를 가지므로 소수가 아닙니다.
소수가 아님
단계 1.5
의 소인수는 입니다.
단계 1.5.1
의 인수는 와 입니다.
단계 1.5.2
의 인수는 와 입니다.
단계 1.6
을 곱합니다.
단계 1.6.1
에 을 곱합니다.
단계 1.6.2
에 을 곱합니다.
단계 1.7
의 인수는 자신입니다.
는 번 나타납니다.
단계 1.8
의 최소공배수는 각 항에 포함된 소인수의 최대 개수 만큼 모든 소인수를 곱한 값입니다.
단계 1.9
의 인수는 자신입니다.
는 번 나타납니다.
단계 1.10
의 최소공배수는 각 항에 포함된 인수의 최대 개수만큼 모든 인수를 곱한 결과입니다.
단계 1.11
임의의 숫자 의 최소공배수는 해당 숫자가 인수인 가장 작은 숫자입니다.
단계 2
단계 2.1
의 각 항에 을 곱합니다.
단계 2.2
좌변을 간단히 합니다.
단계 2.2.1
각 항을 간단히 합니다.
단계 2.2.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 2.2.1.2
와 을 묶습니다.
단계 2.2.1.3
의 공약수로 약분합니다.
단계 2.2.1.3.1
에서 를 인수분해합니다.
단계 2.2.1.3.2
공약수로 약분합니다.
단계 2.2.1.3.3
수식을 다시 씁니다.
단계 2.2.1.4
를 승 합니다.
단계 2.2.1.5
를 승 합니다.
단계 2.2.1.6
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.2.1.7
를 에 더합니다.
단계 2.2.1.8
의 공약수로 약분합니다.
단계 2.2.1.8.1
의 마이너스 부호를 분자로 이동합니다.
단계 2.2.1.8.2
에서 를 인수분해합니다.
단계 2.2.1.8.3
공약수로 약분합니다.
단계 2.2.1.8.4
수식을 다시 씁니다.
단계 2.2.1.9
에 을 곱합니다.
단계 2.2.1.10
분배 법칙을 적용합니다.
단계 2.2.1.11
에 을 곱합니다.
단계 2.2.1.12
FOIL 계산법을 이용하여 를 전개합니다.
단계 2.2.1.12.1
분배 법칙을 적용합니다.
단계 2.2.1.12.2
분배 법칙을 적용합니다.
단계 2.2.1.12.3
분배 법칙을 적용합니다.
단계 2.2.1.13
동류항끼리 묶고 식을 간단히 합니다.
단계 2.2.1.13.1
각 항을 간단히 합니다.
단계 2.2.1.13.1.1
지수를 더하여 에 을 곱합니다.
단계 2.2.1.13.1.1.1
를 옮깁니다.
단계 2.2.1.13.1.1.2
에 을 곱합니다.
단계 2.2.1.13.1.2
에 을 곱합니다.
단계 2.2.1.13.1.3
에 을 곱합니다.
단계 2.2.1.13.2
를 에 더합니다.
단계 2.2.1.13.3
를 에 더합니다.
단계 2.2.2
항을 더해 식을 간단히 합니다.
단계 2.2.2.1
에서 을 뺍니다.
단계 2.2.2.2
를 에 더합니다.
단계 2.3
우변을 간단히 합니다.
단계 2.3.1
의 공약수로 약분합니다.
단계 2.3.1.1
에서 를 인수분해합니다.
단계 2.3.1.2
공약수로 약분합니다.
단계 2.3.1.3
수식을 다시 씁니다.
단계 2.3.2
분배 법칙을 적용합니다.
단계 2.3.3
식을 간단히 합니다.
단계 2.3.3.1
에 을 곱합니다.
단계 2.3.3.2
에 을 곱합니다.
단계 3
단계 3.1
로 방정식을 다시 씁니다.
단계 3.2
방정식의 양변에서 를 뺍니다.
단계 3.3
AC 방법을 이용하여 를 인수분해합니다.
단계 3.3.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 3.3.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 3.4
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 3.5
이 가 되도록 하고 에 대해 식을 풉니다.
단계 3.5.1
를 와 같다고 둡니다.
단계 3.5.2
방정식의 양변에 를 더합니다.
단계 3.6
이 가 되도록 하고 에 대해 식을 풉니다.
단계 3.6.1
를 와 같다고 둡니다.
단계 3.6.2
방정식의 양변에서 를 뺍니다.
단계 3.7
을 참으로 만드는 모든 값이 최종 해가 됩니다.