문제를 입력하십시오...
대수 예제
단계 1
에 를 대입합니다.
단계 2
단계 2.1
에 를 대입합니다.
단계 2.2
에서 을 뺍니다.
단계 2.3
방정식의 좌변을 인수분해합니다.
단계 2.3.1
에서 를 인수분해합니다.
단계 2.3.1.1
를 옮깁니다.
단계 2.3.1.2
에서 를 인수분해합니다.
단계 2.3.1.3
에서 를 인수분해합니다.
단계 2.3.1.4
을 로 바꿔 씁니다.
단계 2.3.1.5
에서 를 인수분해합니다.
단계 2.3.1.6
에서 를 인수분해합니다.
단계 2.3.2
인수분해합니다.
단계 2.3.2.1
공통인수를 이용하여 인수분해를 합니다.
단계 2.3.2.1.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
단계 2.3.2.1.1.1
에서 를 인수분해합니다.
단계 2.3.2.1.1.2
를 + 로 다시 씁니다.
단계 2.3.2.1.1.3
분배 법칙을 적용합니다.
단계 2.3.2.1.1.4
에 을 곱합니다.
단계 2.3.2.1.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 2.3.2.1.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 2.3.2.1.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 2.3.2.1.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 2.3.2.2
불필요한 괄호를 제거합니다.
단계 2.4
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2.5
이 가 되도록 하고 에 대해 식을 풉니다.
단계 2.5.1
를 와 같다고 둡니다.
단계 2.5.2
을 에 대해 풉니다.
단계 2.5.2.1
방정식의 양변에서 를 뺍니다.
단계 2.5.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
단계 2.5.2.2.1
의 각 항을 로 나눕니다.
단계 2.5.2.2.2
좌변을 간단히 합니다.
단계 2.5.2.2.2.1
의 공약수로 약분합니다.
단계 2.5.2.2.2.1.1
공약수로 약분합니다.
단계 2.5.2.2.2.1.2
을 로 나눕니다.
단계 2.5.2.2.3
우변을 간단히 합니다.
단계 2.5.2.2.3.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 2.6
이 가 되도록 하고 에 대해 식을 풉니다.
단계 2.6.1
를 와 같다고 둡니다.
단계 2.6.2
방정식의 양변에 를 더합니다.
단계 2.7
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 2.8
에 를 대입합니다.
단계 2.9
각 식에 대하여 를 구합니다.
단계 2.10
의 에 대해 풉니다.
단계 2.10.1
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 2.10.2
우변을 간단히 합니다.
단계 2.10.2.1
의 정확한 값은 입니다.
단계 2.10.3
사인 함수는 제3사분면과 제4사분면에서 음의 값을 가집니다. 두 번째 해를 구하려면 에서 해를 빼서 기준각을 찾습니다. 그리고 이 기준각에 를 더하여 제3사분면에 속한 해를 구합니다.
단계 2.10.4
두 번째 해를 구하기 위하여 수식을 간단히 합니다.
단계 2.10.4.1
에서 을 뺍니다.
단계 2.10.4.2
결과 각인 은 양의 값으로 보다 작으며 과 양변을 공유하는 관계입니다.
단계 2.10.5
주기를 구합니다.
단계 2.10.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 2.10.5.2
주기 공식에서 에 을 대입합니다.
단계 2.10.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 2.10.5.4
을 로 나눕니다.
단계 2.10.6
모든 음의 각에 를 더하여 양의 각을 얻습니다.
단계 2.10.6.1
에 를 더하여 양의 각도를 구합니다.
단계 2.10.6.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 2.10.6.3
분수를 통분합니다.
단계 2.10.6.3.1
와 을 묶습니다.
단계 2.10.6.3.2
공통분모를 가진 분자끼리 묶습니다.
단계 2.10.6.4
분자를 간단히 합니다.
단계 2.10.6.4.1
에 을 곱합니다.
단계 2.10.6.4.2
에서 을 뺍니다.
단계 2.10.6.5
새 각을 나열합니다.
단계 2.10.7
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 2.11
의 에 대해 풉니다.
단계 2.11.1
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 2.11.2
우변을 간단히 합니다.
단계 2.11.2.1
의 정확한 값은 입니다.
단계 2.11.3
사인 함수는 제1사분면과 제2사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제2사분면에 속한 해를 구합니다.
단계 2.11.4
을 간단히 합니다.
단계 2.11.4.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 2.11.4.2
분수를 통분합니다.
단계 2.11.4.2.1
와 을 묶습니다.
단계 2.11.4.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 2.11.4.3
분자를 간단히 합니다.
단계 2.11.4.3.1
의 왼쪽으로 이동하기
단계 2.11.4.3.2
에서 을 뺍니다.
단계 2.11.5
주기를 구합니다.
단계 2.11.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 2.11.5.2
주기 공식에서 에 을 대입합니다.
단계 2.11.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 2.11.5.4
을 로 나눕니다.
단계 2.11.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 2.12
모든 해를 나열합니다.
임의의 정수 에 대해
단계 2.13
답안을 하나로 합합니다.
임의의 정수 에 대해
임의의 정수 에 대해