문제를 입력하십시오...
대수 예제
단계 1
단계 1.1
다시 씁니다.
단계 1.2
0을 더해 식을 간단히 합니다.
단계 1.3
와 을 묶습니다.
단계 2
부등식의 양변에서 를 뺍니다.
단계 3
단계 3.1
분배 법칙을 적용합니다.
단계 3.2
간단히 합니다.
단계 3.2.1
에 을 곱합니다.
단계 3.2.2
의 공약수로 약분합니다.
단계 3.2.2.1
의 마이너스 부호를 분자로 이동합니다.
단계 3.2.2.2
공약수로 약분합니다.
단계 3.2.2.3
수식을 다시 씁니다.
단계 3.3
를 옮깁니다.
단계 4
부등식을 방정식으로 바꿉니다.
단계 5
근의 공식을 이용해 방정식의 해를 구합니다.
단계 6
이차함수의 근의 공식에 , , 을 대입하여 를 구합니다.
단계 7
단계 7.1
분자를 간단히 합니다.
단계 7.1.1
를 승 합니다.
단계 7.1.2
을 곱합니다.
단계 7.1.2.1
에 을 곱합니다.
단계 7.1.2.2
에 을 곱합니다.
단계 7.1.3
를 에 더합니다.
단계 7.1.4
을 로 바꿔 씁니다.
단계 7.1.5
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 7.2
에 을 곱합니다.
단계 8
해를 하나로 합합니다.
단계 9
각 근을 사용하여 시험 구간을 만듭니다.
단계 10
단계 10.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 10.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 10.1.2
원래 부등식에서 를 로 치환합니다.
단계 10.1.3
좌변 이 우변 보다 작지 않으므로 주어진 명제는 거짓입니다.
거짓
거짓
단계 10.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 10.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 10.2.2
원래 부등식에서 를 로 치환합니다.
단계 10.2.3
좌변 이 우변 보다 작으므로 주어진 명제는 항상 참입니다.
참
참
단계 10.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 10.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 10.3.2
원래 부등식에서 를 로 치환합니다.
단계 10.3.3
좌변 이 우변 보다 작지 않으므로 주어진 명제는 거짓입니다.
거짓
거짓
단계 10.4
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
참
거짓
거짓
참
거짓
단계 11
해는 모두 참인 구간으로 이루어져 있습니다.
단계 12
결과값은 다양한 형태로 나타낼 수 있습니다.
부등식 형식:
구간 표기:
단계 13