대수 예제

그래프 y=x^2-|6x+5|
단계 1
절댓값 꼭짓점을 구합니다. 이 경우, 의 꼭짓점은 입니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
꼭짓점의 좌표를 구하려면 절대값 안의 이 되게 합니다. 이 경우 입니다.
단계 1.2
식을 풀어 절댓값 꼭짓점의 좌표값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
방정식의 양변에서 를 뺍니다.
단계 1.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.1
의 각 항을 로 나눕니다.
단계 1.2.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.2.1.1
공약수로 약분합니다.
단계 1.2.2.2.1.2
로 나눕니다.
단계 1.2.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.3.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.3
수식에서 변수 을 대입합니다.
단계 1.4
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.1
지수 법칙 을 이용하여 지수를 분배합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.1.1
에 곱의 미분 법칙을 적용합니다.
단계 1.4.1.1.2
에 곱의 미분 법칙을 적용합니다.
단계 1.4.1.2
승 합니다.
단계 1.4.1.3
을 곱합니다.
단계 1.4.1.4
승 합니다.
단계 1.4.1.5
승 합니다.
단계 1.4.1.6
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.6.1
의 마이너스 부호를 분자로 이동합니다.
단계 1.4.1.6.2
공약수로 약분합니다.
단계 1.4.1.6.3
수식을 다시 씁니다.
단계 1.4.1.7
에 더합니다.
단계 1.4.1.8
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 1.4.1.9
을 곱합니다.
단계 1.4.2
에 더합니다.
단계 1.5
절댓값의 꼭짓점은 입니다.
단계 2
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
구간 표기:
조건제시법:
단계 3
값에 대해 하나의 값이 존재합니다. 정의역으로부터 일부 값을 선택합니다. 절댓값 꼭짓점인 값 주변의 값을 선택하는 것이 더 유용할 것입니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
값인 에 대입합니다. 여기에서 점은 입니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
수식에서 변수 을 대입합니다.
단계 3.1.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.2.1.1
승 합니다.
단계 3.1.2.1.2
을 곱합니다.
단계 3.1.2.1.3
에 더합니다.
단계 3.1.2.1.4
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 3.1.2.1.5
을 곱합니다.
단계 3.1.2.2
에서 을 뺍니다.
단계 3.1.2.3
최종 답은 입니다.
단계 3.2
값인 에 대입합니다. 여기에서 점은 입니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
수식에서 변수 을 대입합니다.
단계 3.2.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1.1
승 합니다.
단계 3.2.2.1.2
을 곱합니다.
단계 3.2.2.1.3
에 더합니다.
단계 3.2.2.1.4
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 3.2.2.1.5
을 곱합니다.
단계 3.2.2.2
에서 을 뺍니다.
단계 3.2.2.3
최종 답은 입니다.
단계 3.3
값인 에 대입합니다. 여기에서 점은 입니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
수식에서 변수 을 대입합니다.
단계 3.3.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1.1
승 합니다.
단계 3.3.2.1.2
을 곱합니다.
단계 3.3.2.1.3
에 더합니다.
단계 3.3.2.1.4
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 3.3.2.1.5
을 곱합니다.
단계 3.3.2.2
에서 을 뺍니다.
단계 3.3.2.3
최종 답은 입니다.
단계 3.4
값인 에 대입합니다. 여기에서 점은 입니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1
수식에서 변수 을 대입합니다.
단계 3.4.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.2.1.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 3.4.2.1.2
을 곱합니다.
단계 3.4.2.1.3
에 더합니다.
단계 3.4.2.1.4
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 3.4.2.1.5
을 곱합니다.
단계 3.4.2.2
에서 을 뺍니다.
단계 3.4.2.3
최종 답은 입니다.
단계 3.5
절댓값 그래프는 꼭짓점 주변의 점들을 이용하여 그릴 수 있습니다.
단계 4