대수 예제

Résoudre pour x 2sin(x)^2- 3=0 의 제곱근
단계 1
방정식의 양변에 를 더합니다.
단계 2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
의 각 항을 로 나눕니다.
단계 2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1
공약수로 약분합니다.
단계 2.2.1.2
로 나눕니다.
단계 3
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 4
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
로 바꿔 씁니다.
단계 4.2
로 바꿔 씁니다.
단계 4.3
을 곱합니다.
단계 4.4
분모를 결합하고 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.1
을 곱합니다.
단계 4.4.2
승 합니다.
단계 4.4.3
승 합니다.
단계 4.4.4
지수 법칙 을 이용하여 지수를 합칩니다.
단계 4.4.5
에 더합니다.
단계 4.4.6
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.6.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 4.4.6.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 4.4.6.3
을 묶습니다.
단계 4.4.6.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.6.4.1
공약수로 약분합니다.
단계 4.4.6.4.2
수식을 다시 씁니다.
단계 4.4.6.5
지수값을 계산합니다.
단계 4.5
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1
의 최소 공통 지수를 이용하여 수식을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 4.5.1.2
로 바꿔 씁니다.
단계 4.5.1.3
로 바꿔 씁니다.
단계 4.5.2
근호의 곱의 미분 법칙을 사용하여 묶습니다.
단계 4.5.3
승 합니다.
단계 4.6
을 곱합니다.
단계 5
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 5.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 5.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 6
각 식에 대하여 를 구합니다.
단계 7
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 7.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1
의 값을 구합니다.
단계 7.3
사인 함수는 제1사분면과 제2사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제2사분면에 속한 해를 구합니다.
단계 7.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.4.1
괄호를 제거합니다.
단계 7.4.2
괄호를 제거합니다.
단계 7.4.3
에서 을 뺍니다.
단계 7.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 7.5.2
주기 공식에서 을 대입합니다.
단계 7.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 7.5.4
로 나눕니다.
단계 7.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 8
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 8.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1
의 값을 구합니다.
단계 8.3
사인 함수는 제3사분면과 제4사분면에서 음의 값을 가집니다. 두 번째 해를 구하려면 에서 해를 빼서 기준각을 찾습니다. 그리고 이 기준각에 를 더하여 제3사분면에 속한 해를 구합니다.
단계 8.4
두 번째 해를 구하기 위하여 수식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.4.1
에서 을 뺍니다.
단계 8.4.2
결과 각인 은 양의 값으로 보다 작으며 과 양변을 공유하는 관계입니다.
단계 8.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 8.5.2
주기 공식에서 을 대입합니다.
단계 8.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 8.5.4
로 나눕니다.
단계 8.6
모든 음의 각에 를 더하여 양의 각을 얻습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.6.1
를 더하여 양의 각도를 구합니다.
단계 8.6.2
에서 을 뺍니다.
단계 8.6.3
새 각을 나열합니다.
단계 8.7
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 9
모든 해를 나열합니다.
임의의 정수 에 대해
단계 10
해를 하나로 합합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
, 에 통합합니다.
임의의 정수 에 대해
단계 10.2
, 에 통합합니다.
임의의 정수 에 대해
임의의 정수 에 대해