문제를 입력하십시오...
대수 예제
단계 1
부등식의 양변에서 를 뺍니다.
단계 2
단계 2.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 2.2
공통분모를 가진 분자끼리 묶습니다.
단계 2.3
분자를 간단히 합니다.
단계 2.3.1
분배 법칙을 적용합니다.
단계 2.3.2
에 을 곱합니다.
단계 2.3.3
의 왼쪽으로 이동하기
단계 2.3.4
분배 법칙을 적용합니다.
단계 2.3.5
에 을 곱합니다.
단계 2.3.6
에 을 곱합니다.
단계 2.3.7
에서 을 뺍니다.
단계 2.4
을(를) 공통분모가 있는 분수로 표현합니다.
단계 2.5
공통분모를 가진 분자끼리 묶습니다.
단계 2.6
분자를 간단히 합니다.
단계 2.6.1
를 에 더합니다.
단계 2.6.2
에서 을 뺍니다.
단계 2.6.3
를 에 더합니다.
단계 2.6.4
에서 를 인수분해합니다.
단계 2.6.4.1
에서 를 인수분해합니다.
단계 2.6.4.2
에서 를 인수분해합니다.
단계 2.6.4.3
에서 를 인수분해합니다.
단계 3
모든 인수가 이 되도록 인수식을 풀어서 수식의 부호가 음수에서 양수로 바뀌는 모든 값을 찾습니다.
단계 4
방정식의 양변에 를 더합니다.
단계 5
방정식의 양변에 를 더합니다.
단계 6
각 인수에 대해 식을 풀어 절댓값 식이 음에서 양으로 가는 값을 구합니다.
단계 7
해를 하나로 합합니다.
단계 8
단계 8.1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 8.2
방정식의 양변에 를 더합니다.
단계 8.3
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 9
각 근을 사용하여 시험 구간을 만듭니다.
단계 10
단계 10.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 10.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 10.1.2
원래 부등식에서 를 로 치환합니다.
단계 10.1.3
좌변 이 우변 보다 작으므로 주어진 명제는 항상 참입니다.
참
참
단계 10.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 10.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 10.2.2
원래 부등식에서 를 로 치환합니다.
단계 10.2.3
좌변 이 우변 보다 작지 않으므로 주어진 명제는 거짓입니다.
거짓
거짓
단계 10.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 10.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 10.3.2
원래 부등식에서 를 로 치환합니다.
단계 10.3.3
좌변 이 우변 보다 작으므로 주어진 명제는 항상 참입니다.
참
참
단계 10.4
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
단계 10.4.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 10.4.2
원래 부등식에서 를 로 치환합니다.
단계 10.4.3
좌변 이 우변 보다 작지 않으므로 주어진 명제는 거짓입니다.
거짓
거짓
단계 10.5
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
참
거짓
참
거짓
참
거짓
참
거짓
단계 11
해는 모두 참인 구간으로 이루어져 있습니다.
또는
단계 12
결과값은 다양한 형태로 나타낼 수 있습니다.
부등식 형식:
구간 표기:
단계 13