대수 예제

Résoudre le système de Equations Solve the system of equations y=2x+3 and 2y+2x=-6 using the Substitution Method.
Solve the system of equations and using the Substitution Method.
단계 1
각 방정식에서 를 모두 로 바꿉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
를 모두 로 바꿉니다.
단계 1.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1.1.1
분배 법칙을 적용합니다.
단계 1.2.1.1.2
을 곱합니다.
단계 1.2.1.1.3
을 곱합니다.
단계 1.2.1.2
에 더합니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
를 포함하지 않은 모든 항을 방정식의 우변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
방정식의 양변에서 를 뺍니다.
단계 2.1.2
에서 을 뺍니다.
단계 2.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
의 각 항을 로 나눕니다.
단계 2.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1.1
공약수로 약분합니다.
단계 2.2.2.1.2
로 나눕니다.
단계 2.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.3.1
로 나눕니다.
단계 3
각 방정식에서 를 모두 로 바꿉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
를 모두 로 바꿉니다.
단계 3.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
을 곱합니다.
단계 3.2.1.2
에 더합니다.
단계 4
연립방정식의 해는 모든 유효한 해의 순서쌍으로 이루어진 전체 집합입니다.
단계 5
결과값은 다양한 형태로 나타낼 수 있습니다.
점 형식:
방정식 형태:
단계 6