대수 예제

Résoudre le système de Equations x^2+(y-2)^2=25 -2x+y=7
단계 1
방정식의 양변에 를 더합니다.
단계 2
각 방정식에서 를 모두 로 바꿉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
를 모두 로 바꿉니다.
단계 2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1.1
에서 을 뺍니다.
단계 2.2.1.1.2
로 바꿔 씁니다.
단계 2.2.1.1.3
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1.3.1
분배 법칙을 적용합니다.
단계 2.2.1.1.3.2
분배 법칙을 적용합니다.
단계 2.2.1.1.3.3
분배 법칙을 적용합니다.
단계 2.2.1.1.4
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1.4.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1.4.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 2.2.1.1.4.1.2
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1.4.1.2.1
를 옮깁니다.
단계 2.2.1.1.4.1.2.2
을 곱합니다.
단계 2.2.1.1.4.1.3
을 곱합니다.
단계 2.2.1.1.4.1.4
을 곱합니다.
단계 2.2.1.1.4.1.5
을 곱합니다.
단계 2.2.1.1.4.1.6
을 곱합니다.
단계 2.2.1.1.4.2
에 더합니다.
단계 2.2.1.2
에 더합니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
방정식의 양변에서 를 뺍니다.
단계 3.2
의 반대 항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
에서 을 뺍니다.
단계 3.2.2
에 더합니다.
단계 3.3
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
에서 를 인수분해합니다.
단계 3.3.2
에서 를 인수분해합니다.
단계 3.3.3
에서 를 인수분해합니다.
단계 3.4
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 3.5
와 같다고 둡니다.
단계 3.6
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.6.1
와 같다고 둡니다.
단계 3.6.2
방정식의 양변에서 를 뺍니다.
단계 3.7
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 4
각 방정식에서 를 모두 로 바꿉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
를 모두 로 바꿉니다.
단계 4.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1.1
을 곱합니다.
단계 4.2.1.2
에 더합니다.
단계 5
각 방정식에서 를 모두 로 바꿉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
를 모두 로 바꿉니다.
단계 5.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1.1
을 곱합니다.
단계 5.2.1.2
에서 을 뺍니다.
단계 6
연립방정식의 해는 모든 유효한 해의 순서쌍으로 이루어진 전체 집합입니다.
단계 7
결과값은 다양한 형태로 나타낼 수 있습니다.
점 형식:
방정식 형태:
단계 8