대수 예제

간단히 정리하기 ((5x^2+4x-1)/(2x+6))÷((x^2-1)/(x^2+2x-3))
단계 1
분수로 나누려면 분수의 역수를 곱합니다.
단계 2
공통인수를 이용하여 인수분해를 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
에서 를 인수분해합니다.
단계 2.1.2
+ 로 다시 씁니다.
단계 2.1.3
분배 법칙을 적용합니다.
단계 2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 2.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 2.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 3
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
에서 를 인수분해합니다.
단계 3.2
에서 를 인수분해합니다.
단계 3.3
에서 를 인수분해합니다.
단계 4
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 4.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 5
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
로 바꿔 씁니다.
단계 5.2
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 6
항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.1
에서 를 인수분해합니다.
단계 6.1.2
공약수로 약분합니다.
단계 6.1.3
수식을 다시 씁니다.
단계 6.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
에서 를 인수분해합니다.
단계 6.2.2
에서 를 인수분해합니다.
단계 6.2.3
공약수로 약분합니다.
단계 6.2.4
수식을 다시 씁니다.
단계 6.3
을 곱합니다.
단계 6.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.4.1
공약수로 약분합니다.
단계 6.4.2
수식을 다시 씁니다.