대수 예제

Résoudre le système de Equations What is the solution to the system of equations y=-x^2+2 and y=x^2 ?
What is the solution to the system of equations and ?
단계 1
각 방정식의 동일한 변을 소거하여 하나의 식으로 만듭니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
을 포함하는 모든 항을 방정식의 좌변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
방정식의 양변에서 를 뺍니다.
단계 2.1.2
에서 을 뺍니다.
단계 2.2
방정식의 양변에서 를 뺍니다.
단계 2.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
의 각 항을 로 나눕니다.
단계 2.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1.1
공약수로 약분합니다.
단계 2.3.2.1.2
로 나눕니다.
단계 2.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.3.1
로 나눕니다.
단계 2.4
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 2.5
의 거듭제곱근은 입니다.
단계 2.6
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 2.6.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 2.6.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 3
이면 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
를 대입합니다.
단계 3.2
에서 을 대입하고 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
괄호를 제거합니다.
단계 3.2.2
1의 모든 거듭제곱은 1입니다.
단계 4
연립방정식의 해는 모든 유효한 해의 순서쌍으로 이루어진 전체 집합입니다.
단계 5
결과값은 다양한 형태로 나타낼 수 있습니다.
점 형식:
방정식 형태:
단계 6