대수 예제

변환 설명하기 f(x)=-(4/3)^(2(x-3))+1
단계 1
부모 함수는 주어진 함수 종류의 가장 간결한 기본 형식입니다.
단계 2
첫 번째 방정식에서 두 번째 방정식으로의 변환은 각 방정식에서 , , 를 찾아서 구할 수 있습니다.
단계 3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1.1
분배 법칙을 적용합니다.
단계 3.1.1.2
을 곱합니다.
단계 3.1.1.3
에 곱의 미분 법칙을 적용합니다.
단계 3.1.2
하나의 분수로 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.2.1
을(를) 공통분모가 있는 분수로 표현합니다.
단계 3.1.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 3.2
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
로 바꿔 씁니다.
단계 3.2.2
로 바꿔 씁니다.
단계 3.2.3
을 다시 정렬합니다.
단계 3.2.4
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 4
에 대해 , , 를 구합니다.
단계 5
에 대해 , , 를 구합니다.
단계 6
수평 이동은 값에 의해 결정됩니다. 수평 이동은 다음과 같습니다:
- 그래프는 만큼 왼쪽으로 평행이동합니다.
- 만큼 오른쪽으로 평행이동합니다.
수평 이동: 오른쪽 단위
단계 7
수직이동은 값에 따라 결정됩니다. 수직이동은 다음과 같이 표현됩니다:
- 그래프는 만큼 위로 평행이동합니다.
- The graph is shifted down units.
수직 이동: 위로 만큼 이동
단계 8
의 부호는 x축에 대한 반사 대칭을 나타냅니다. 이면 그래프가 x축에 대해 반사 대칭임을 의미합니다.
x축에 대한 반사: 반사됨
단계 9
의 값은 그래프가 y축 방향으로 확대되거나 축소된 정도를 나타냅니다.
은 y축 방향으로의 확대를 의미합니다 (그래프의 폭이 줄어듦)
는 y축 방향으로의 축소를 의미합니다(그래프의 폭이 늘어남)
y축 방향으로의 축소 또는 확대: 없음
단계 10
함수의 변환을 구하려면 두 함수를 비교하여 수평 또는 수직 이동이 있는지, x축에 대해 대칭인지, y축 방향으로 확대되었는지 확인합니다.
부모 함수:
수평 이동: 오른쪽 단위
수직 이동: 위로 만큼 이동
x축에 대한 반사: 반사됨
y축 방향으로의 축소 또는 확대: 없음
단계 11