예제
S⎛⎜⎝⎡⎢⎣abc⎤⎥⎦⎞⎟⎠=⎡⎢⎣a−b−ca−b−ca−b+c⎤⎥⎦
단계 1
변환의 핵(커널)은 변환 결과 영벡터가 되는 벡터를 말합니다(변환의 원상).
⎡⎢⎣a−b−ca−b−ca−b+c⎤⎥⎦=0
단계 2
벡터 방정식으로부터 연립 방정식을 세웁니다.
a−b−c=0
a−b−c=0
a−b+c=0
단계 3
Write the system as a matrix.
⎡⎢
⎢⎣1−1−101−1−101−110⎤⎥
⎥⎦
단계 4
단계 4.1
Perform the row operation R2=R2−R1 to make the entry at 2,1 a 0.
단계 4.1.1
Perform the row operation R2=R2−R1 to make the entry at 2,1 a 0.
⎡⎢
⎢⎣1−1−101−1−1+1−1+10−01−110⎤⎥
⎥⎦
단계 4.1.2
R2을 간단히 합니다.
⎡⎢
⎢⎣1−1−1000001−110⎤⎥
⎥⎦
⎡⎢
⎢⎣1−1−1000001−110⎤⎥
⎥⎦
단계 4.2
Perform the row operation R3=R3−R1 to make the entry at 3,1 a 0.
단계 4.2.1
Perform the row operation R3=R3−R1 to make the entry at 3,1 a 0.
⎡⎢
⎢⎣1−1−1000001−1−1+11+10−0⎤⎥
⎥⎦
단계 4.2.2
R3을 간단히 합니다.
⎡⎢
⎢⎣1−1−1000000020⎤⎥
⎥⎦
⎡⎢
⎢⎣1−1−1000000020⎤⎥
⎥⎦
단계 4.3
Swap R3 with R2 to put a nonzero entry at 2,3.
⎡⎢
⎢⎣1−1−1000200000⎤⎥
⎥⎦
단계 4.4
Multiply each element of R2 by 12 to make the entry at 2,3 a 1.
단계 4.4.1
Multiply each element of R2 by 12 to make the entry at 2,3 a 1.
⎡⎢
⎢⎣1−1−10020222020000⎤⎥
⎥⎦
단계 4.4.2
R2을 간단히 합니다.
⎡⎢
⎢⎣1−1−1000100000⎤⎥
⎥⎦
⎡⎢
⎢⎣1−1−1000100000⎤⎥
⎥⎦
단계 4.5
Perform the row operation R1=R1+R2 to make the entry at 1,3 a 0.
단계 4.5.1
Perform the row operation R1=R1+R2 to make the entry at 1,3 a 0.
⎡⎢
⎢⎣1+0−1+0−1+1⋅10+000100000⎤⎥
⎥⎦
단계 4.5.2
R1을 간단히 합니다.
⎡⎢
⎢⎣1−10000100000⎤⎥
⎥⎦
⎡⎢
⎢⎣1−10000100000⎤⎥
⎥⎦
⎡⎢
⎢⎣1−10000100000⎤⎥
⎥⎦
단계 5
Use the result matrix to declare the final solution to the system of equations.
a−b=0
c=0
0=0
단계 6
Write a solution vector by solving in terms of the free variables in each row.
⎡⎢⎣abc⎤⎥⎦=⎡⎢⎣bb0⎤⎥⎦
단계 7
Write the solution as a linear combination of vectors.
⎡⎢⎣abc⎤⎥⎦=b⎡⎢⎣110⎤⎥⎦
단계 8
Write as a solution set.
⎧⎪⎨⎪⎩b⎡⎢⎣110⎤⎥⎦∣∣
∣∣b∈R⎫⎪⎬⎪⎭
단계 9
The solution is the set of vectors created from the free variables of the system.
⎧⎪⎨⎪⎩⎡⎢⎣110⎤⎥⎦⎫⎪⎬⎪⎭
단계 10
S의 핵(커널)은 부분공간 ⎧⎪⎨⎪⎩⎡⎢⎣110⎤⎥⎦⎫⎪⎬⎪⎭입니다.
K(S)=⎧⎪⎨⎪⎩⎡⎢⎣110⎤⎥⎦⎫⎪⎬⎪⎭