삼각법 예제
cos(6x)cos(6x)
단계 1
드무아브르의 정리 (r(cos(x)+i⋅sin(x))n=rn(cos(nx)+i⋅sin(nx)))(r(cos(x)+i⋅sin(x))n=rn(cos(nx)+i⋅sin(nx)))를 사용하여 cos(6x)cos(6x)를 전개하기에 적합한 방법. r=1r=1이면 cos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))ncos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))n입니다.
cos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))ncos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))n
단계 2
이항 정리를 이용하여 cos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))ncos(nx)+i⋅sin(nx)=(cos(x)+i⋅sin(x))n 의 우변을 전개합니다.
수식 전개: (cos(x)+i⋅sin(x))6(cos(x)+i⋅sin(x))6
단계 3
이항정리 이용
cos6(x)+6cos5(x)(isin(x))+15cos4(x)(isin(x))2+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)(isin(x))+15cos4(x)(isin(x))2+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
단계 4
단계 4.1
각 항을 간단히 합니다.
단계 4.1.1
isin(x)isin(x)에 곱의 미분 법칙을 적용합니다.
cos6(x)+6cos5(x)isin(x)+15cos4(x)(i2sin2(x))+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)+15cos4(x)(i2sin2(x))+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.2
곱셈의 교환법칙을 사용하여 다시 씁니다.
cos6(x)+6cos5(x)isin(x)+15⋅i2cos4(x)sin2(x)+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)+15⋅i2cos4(x)sin2(x)+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.3
i2i2을 -1−1로 바꿔 씁니다.
cos6(x)+6cos5(x)isin(x)+15⋅-1cos4(x)sin2(x)+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6cos6(x)+6cos5(x)isin(x)+15⋅−1cos4(x)sin2(x)+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.4
15에 -1을 곱합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)+20cos3(x)(isin(x))3+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.5
isin(x)에 곱의 미분 법칙을 적용합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)+20cos3(x)(i3sin3(x))+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.6
곱셈의 교환법칙을 사용하여 다시 씁니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)+20⋅i3cos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.7
i2로 인수분해합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)+20⋅(i2⋅i)cos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.8
i2을 -1로 바꿔 씁니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)+20⋅(-1⋅i)cos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.9
-1i을 -i로 바꿔 씁니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)+20⋅(-i)cos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.10
-1에 20을 곱합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)(isin(x))4+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.11
isin(x)에 곱의 미분 법칙을 적용합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)(i4sin4(x))+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.12
곱셈의 교환법칙을 사용하여 다시 씁니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15⋅i4cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.13
i4을 1로 바꿔 씁니다.
단계 4.1.13.1
i4을 (i2)2로 바꿔 씁니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15⋅(i2)2cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.13.2
i2을 -1로 바꿔 씁니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15⋅(-1)2cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.13.3
-1를 2승 합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15⋅1cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15⋅1cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.14
15에 1을 곱합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(isin(x))5+(isin(x))6
단계 4.1.15
isin(x)에 곱의 미분 법칙을 적용합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(i5sin5(x))+(isin(x))6
단계 4.1.16
i4로 인수분해합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(i4isin5(x))+(isin(x))6
단계 4.1.17
i4을 1로 바꿔 씁니다.
단계 4.1.17.1
i4을 (i2)2로 바꿔 씁니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)((i2)2isin5(x))+(isin(x))6
단계 4.1.17.2
i2을 -1로 바꿔 씁니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)((-1)2isin5(x))+(isin(x))6
단계 4.1.17.3
-1를 2승 합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(1isin5(x))+(isin(x))6
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(1isin5(x))+(isin(x))6
단계 4.1.18
i에 1을 곱합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)(isin5(x))+(isin(x))6
단계 4.1.19
isin(x)에 곱의 미분 법칙을 적용합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+i6sin6(x)
단계 4.1.20
i4로 인수분해합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+i4i2sin6(x)
단계 4.1.21
i4을 1로 바꿔 씁니다.
단계 4.1.21.1
i4을 (i2)2로 바꿔 씁니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+(i2)2i2sin6(x)
단계 4.1.21.2
i2을 -1로 바꿔 씁니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+(-1)2i2sin6(x)
단계 4.1.21.3
-1를 2승 합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+1i2sin6(x)
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+1i2sin6(x)
단계 4.1.22
i2에 1을 곱합니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)+i2sin6(x)
단계 4.1.23
i2을 -1로 바꿔 씁니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)-1sin6(x)
단계 4.1.24
-1sin6(x)을 -sin6(x)로 바꿔 씁니다.
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)-sin6(x)
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)-sin6(x)
단계 4.2
cos6(x)+6cos5(x)isin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6cos(x)isin5(x)-sin6(x)에서 인수를 다시 정렬합니다.
cos6(x)+6icos5(x)sin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6icos(x)sin5(x)-sin6(x)
cos6(x)+6icos5(x)sin(x)-15cos4(x)sin2(x)-20icos3(x)sin3(x)+15cos2(x)sin4(x)+6icos(x)sin5(x)-sin6(x)
단계 5
수식에서 허수 부분이 cos(6x)와 같습니다. 허수 i를 제거합니다.
cos(6x)=cos6(x)-15cos4(x)sin2(x)+15cos2(x)sin4(x)-sin6(x)