선형 대수 예제

행렬의 소거를 이용하여 풀기
2x-y+3z=8 , x-6y-z=0 , -6x+3y-9z=24
단계 1
Write the system as a matrix.
[2-1381-6-10-63-924]
단계 2
기약 행 사다리꼴을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
[22-1232821-6-10-63-924]
단계 2.1.2
R1을 간단히 합니다.
[1-123241-6-10-63-924]
[1-123241-6-10-63-924]
단계 2.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1-123241-1-6+12-1-320-4-63-924]
단계 2.2.2
R2을 간단히 합니다.
[1-123240-112-52-4-63-924]
[1-123240-112-52-4-63-924]
단계 2.3
Perform the row operation R3=R3+6R1 to make the entry at 3,1 a 0.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
Perform the row operation R3=R3+6R1 to make the entry at 3,1 a 0.
[1-123240-112-52-4-6+613+6(-12)-9+6(32)24+64]
단계 2.3.2
R3을 간단히 합니다.
[1-123240-112-52-400048]
[1-123240-112-52-400048]
단계 2.4
Multiply each element of R2 by -211 to make the entry at 2,2 a 1.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
Multiply each element of R2 by -211 to make the entry at 2,2 a 1.
[1-12324-2110-211(-112)-211(-52)-211-400048]
단계 2.4.2
R2을 간단히 합니다.
[1-123240151181100048]
[1-123240151181100048]
단계 2.5
Multiply each element of R3 by 148 to make the entry at 3,4 a 1.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
Multiply each element of R3 by 148 to make the entry at 3,4 a 1.
[1-12324015118110480480484848]
단계 2.5.2
R3을 간단히 합니다.
[1-12324015118110001]
[1-12324015118110001]
단계 2.6
Perform the row operation R2=R2-811R3 to make the entry at 2,4 a 0.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.1
Perform the row operation R2=R2-811R3 to make the entry at 2,4 a 0.
[1-123240-81101-8110511-8110811-81110001]
단계 2.6.2
R2을 간단히 합니다.
[1-123240151100001]
[1-123240151100001]
단계 2.7
Perform the row operation R1=R1-4R3 to make the entry at 1,4 a 0.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.1
Perform the row operation R1=R1-4R3 to make the entry at 1,4 a 0.
[1-40-12-4032-404-410151100001]
단계 2.7.2
R1을 간단히 합니다.
[1-123200151100001]
[1-123200151100001]
단계 2.8
Perform the row operation R1=R1+12R2 to make the entry at 1,2 a 0.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.8.1
Perform the row operation R1=R1+12R2 to make the entry at 1,2 a 0.
[1+120-12+12132+125110+1200151100001]
단계 2.8.2
R1을 간단히 합니다.
[10191100151100001]
[10191100151100001]
[10191100151100001]
단계 3
Use the result matrix to declare the final solution to the system of equations.
x+1911z=0
y+511z=0
0=1
단계 4
The system is inconsistent so there is no solution.
해 없음
문제를 입력하십시오
using Amazon.Auth.AccessControlPolicy;
Mathway를 사용하려면 자바스크립트와 최신 버전의 브라우저가 필요합니다.
 [x2  12  π  xdx ] 
AmazonPay