미적분 예제

미분 방정식 풀기
,
단계 1
변수를 분리합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
의 각 항을 로 나눕니다.
단계 1.1.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.1.1
공약수로 약분합니다.
단계 1.1.2.1.2
로 나눕니다.
단계 1.1.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.3.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.2
공통분모를 가진 분자끼리 묶습니다.
단계 1.3
양변에 을 곱합니다.
단계 1.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
공약수로 약분합니다.
단계 1.4.2
수식을 다시 씁니다.
단계 1.5
식을 다시 씁니다.
단계 2
양변을 적분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
각 변의 적분을 구합니다.
단계 2.2
좌변을 적분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1.1
를 미분합니다.
단계 2.2.1.1.2
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 2.2.1.1.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2.1.1.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.2.1.1.3.3
을 곱합니다.
단계 2.2.1.1.4
상수의 미분 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1.4.1
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 2.2.1.1.4.2
에 더합니다.
단계 2.2.1.2
를 사용해 문제를 바꿔 씁니다.
단계 2.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
을 곱합니다.
단계 2.2.2.2
의 왼쪽으로 이동하기
단계 2.2.3
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 2.2.4
에 대해 적분하면 입니다.
단계 2.2.5
간단히 합니다.
단계 2.2.6
를 모두 로 바꿉니다.
단계 2.3
에 대해 적분하면 입니다.
단계 2.4
우변에 적분 상수를 로 묶습니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
방정식의 양변에 을 곱합니다.
단계 3.2
방정식의 양변을 간단히 정리합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1.1
을 묶습니다.
단계 3.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1.2.1
공약수로 약분합니다.
단계 3.2.1.1.2.2
수식을 다시 씁니다.
단계 3.2.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1
분배 법칙을 적용합니다.
단계 3.3
로그를 포함하고 있는 모든 항을 방정식의 좌변으로 옮깁니다.
단계 3.4
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1.1.1
를 로그 안으로 옮겨 을 간단히 합니다.
단계 3.4.1.1.2
짝수 거듭제곱을 갖는 멱법은 항상 양수이기 때문에 에서 절댓값을 제거합니다.
단계 3.4.1.2
로그의 나눗셈의 성질 을 이용합니다.
단계 3.5
을 구하기 위해 로그의 성질을 이용하여 방정식을 다시 씁니다.
단계 3.6
로그의 정의를 이용하여 를 지수 형태로 다시 씁니다. 만약 가 양의 실수와 이면, 와 같습니다.
단계 3.7
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.7.1
로 방정식을 다시 씁니다.
단계 3.7.2
양변에 을 곱합니다.
단계 3.7.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.7.3.1
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.7.3.1.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.7.3.1.1.1
공약수로 약분합니다.
단계 3.7.3.1.1.2
수식을 다시 씁니다.
단계 3.7.3.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.7.3.2.1
에서 인수를 다시 정렬합니다.
단계 3.7.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.7.4.1
절대값의 항을 제거합니다. 이므로 방정식 우변에 이 생깁니다.
단계 3.7.4.2
방정식의 양변에 를 더합니다.
단계 3.7.4.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.7.4.3.1
의 각 항을 로 나눕니다.
단계 3.7.4.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.7.4.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.7.4.3.2.1.1
공약수로 약분합니다.
단계 3.7.4.3.2.1.2
로 나눕니다.
단계 4
상수 항을 하나로 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
적분 상수를 간단히 합니다.
단계 4.2
양 또는 음의 상수를 결합합니다.
단계 5
초기 조건을 활용하여 에서 을, 를 대입하여 값을 구합니다.
단계 6
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
로 방정식을 다시 씁니다.
단계 6.2
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
1의 모든 거듭제곱은 1입니다.
단계 6.2.2
을 곱합니다.
단계 6.3
를 포함하지 않은 모든 항을 방정식의 우변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.1
방정식의 양변에서 를 뺍니다.
단계 6.3.2
을(를) 공통분모가 있는 분수로 표현합니다.
단계 6.3.3
공통분모를 가진 분자끼리 묶습니다.
단계 6.3.4
에서 을 뺍니다.
단계 6.4
방정식의 각 변에 있는 식이 같은 분모를 가지므로 분자가 같아야 합니다.
단계 7
를 대입하여 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
를 대입합니다.
단계 7.2
을 곱합니다.
문제를 입력하십시오
Mathway를 사용하려면 자바스크립트와 최신 버전의 브라우저가 필요합니다.