미적분 예제

주어진 구간의 절대 최댓값 및 최솟값 구하기
,
단계 1
임계점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.1
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.1.1.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.1.2.3
을 곱합니다.
단계 1.1.1.3
상수의 미분 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.3.1
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.1.3.2
에 더합니다.
단계 1.1.2
에 대한 1차 도함수는 입니다.
단계 1.2
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
1차 도함수가 이 되게 합니다.
단계 1.2.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.1
에서 를 인수분해합니다.
단계 1.2.2.2
에서 를 인수분해합니다.
단계 1.2.2.3
에서 를 인수분해합니다.
단계 1.2.3
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 1.2.4
와 같다고 둡니다.
단계 1.2.5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.5.1
와 같다고 둡니다.
단계 1.2.5.2
방정식의 양변에 를 더합니다.
단계 1.2.6
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 1.3
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 1.4
도함수가 이거나 정의되지 않은 각 값에서 을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.1
를 대입합니다.
단계 1.4.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 1.4.1.2.1.2
을 여러 번 거듭제곱해도 이 나옵니다.
단계 1.4.1.2.1.3
을 곱합니다.
단계 1.4.1.2.2
더하고 빼서 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.2.1
에 더합니다.
단계 1.4.1.2.2.2
에서 을 뺍니다.
단계 1.4.2
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.1
를 대입합니다.
단계 1.4.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.1
승 합니다.
단계 1.4.2.2.1.2
승 합니다.
단계 1.4.2.2.1.3
을 곱합니다.
단계 1.4.2.2.2
숫자를 빼서 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.2.1
에서 을 뺍니다.
단계 1.4.2.2.2.2
에서 을 뺍니다.
단계 1.4.3
모든 점을 나열합니다.
단계 2
포함된 끝점에서 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
를 대입합니다.
단계 2.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.1.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 2.1.2.1.2
을 여러 번 거듭제곱해도 이 나옵니다.
단계 2.1.2.1.3
을 곱합니다.
단계 2.1.2.2
더하고 빼서 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.2.1
에 더합니다.
단계 2.1.2.2.2
에서 을 뺍니다.
단계 2.2
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
를 대입합니다.
단계 2.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1.1
승 합니다.
단계 2.2.2.1.2
승 합니다.
단계 2.2.2.1.3
을 곱합니다.
단계 2.2.2.2
숫자를 빼서 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.2.1
에서 을 뺍니다.
단계 2.2.2.2.2
에서 을 뺍니다.
단계 2.3
모든 점을 나열합니다.
단계 3
주어진 구간에서 절대 최댓값과 최솟값을 결정하기 위하여 각 값에 대해 구한 값을 비교합니다. 가장 큰 값에서 최댓값이 발생하고 가장 작은 값에서 최솟값이 발생합니다.
절댓값 최대:
절댓값 최소:
단계 4
문제를 입력하십시오
Mathway를 사용하려면 자바스크립트와 최신 버전의 브라우저가 필요합니다.