三角関数 例

頂点を求める ((x-3)^2)/25+((y+4)^2)/9=1
ステップ 1
方程式の各項を簡約し、右辺をに等しくします。楕円または双曲線の標準形は、方程式の右辺がに等しいことが必要です。
ステップ 2
楕円の形です。この形を利用して、楕円の長軸と短軸、および中心を求めるために使用する値を決定します。
ステップ 3
この楕円の中の値を標準形の値と一致させます。変数は楕円の長軸の半径を、は楕円の短軸の半径を、は原点からのx補正値を、は原点からのy補正値を表します。
ステップ 4
対頂点を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
楕円の1番目の頂点は、に加えることで求められます。
ステップ 4.2
、およびの既知数を公式に代入します。
ステップ 4.3
簡約します。
ステップ 4.4
楕円の2番目の交点は、からを引くことで求められます。
ステップ 4.5
、およびの既知数を公式に代入します。
ステップ 4.6
簡約します。
ステップ 4.7
楕円には2つの頂点があります。
:
:
:
:
ステップ 5