三角関数 例

頂点を求める y^2=-9/8x
ステップ 1
方程式を頂点形で書き換えます。
タップして手順をさらに表示してください…
ステップ 1.1
方程式の左辺にを取り出します。
タップして手順をさらに表示してください…
ステップ 1.1.1
方程式をとして書き換えます。
ステップ 1.1.2
方程式の両辺にを掛けます。
ステップ 1.1.3
方程式の両辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.3.1
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.3.1.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.3.1.1.1
をまとめます。
ステップ 1.1.3.1.1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1.3.1.1.2.1
の先頭の負を分子に移動させます。
ステップ 1.1.3.1.1.2.2
の先頭の負を分子に移動させます。
ステップ 1.1.3.1.1.2.3
で因数分解します。
ステップ 1.1.3.1.1.2.4
共通因数を約分します。
ステップ 1.1.3.1.1.2.5
式を書き換えます。
ステップ 1.1.3.1.1.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1.3.1.1.3.1
で因数分解します。
ステップ 1.1.3.1.1.3.2
共通因数を約分します。
ステップ 1.1.3.1.1.3.3
式を書き換えます。
ステップ 1.1.3.1.1.4
掛け算します。
タップして手順をさらに表示してください…
ステップ 1.1.3.1.1.4.1
をかけます。
ステップ 1.1.3.1.1.4.2
をかけます。
ステップ 1.1.3.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.3.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.3.2.1.1
をまとめます。
ステップ 1.1.3.2.1.2
の左に移動させます。
ステップ 1.2
の平方完成。
タップして手順をさらに表示してください…
ステップ 1.2.1
を利用して、の値を求めます。
ステップ 1.2.2
放物線の標準形を考えます。
ステップ 1.2.3
公式を利用しての値を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.3.1
の値を公式に代入します。
ステップ 1.2.3.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.1.1
で因数分解します。
ステップ 1.2.3.2.1.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.1.2.1
共通因数を約分します。
ステップ 1.2.3.2.1.2.2
式を書き換えます。
ステップ 1.2.3.2.2
分子に分母の逆数を掛けます。
ステップ 1.2.3.2.3
を掛けます。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.3.1
をかけます。
ステップ 1.2.3.2.3.2
をかけます。
ステップ 1.2.4
公式を利用しての値を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.4.1
、およびの値を公式に代入します。
ステップ 1.2.4.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.4.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.4.2.1.1
を正数乗し、を得ます。
ステップ 1.2.4.2.1.2
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.4.2.1.2.1
をかけます。
ステップ 1.2.4.2.1.2.2
をまとめます。
ステップ 1.2.4.2.1.3
をかけます。
ステップ 1.2.4.2.1.4
分数の前に負数を移動させます。
ステップ 1.2.4.2.1.5
分子に分母の逆数を掛けます。
ステップ 1.2.4.2.1.6
を掛けます。
タップして手順をさらに表示してください…
ステップ 1.2.4.2.1.6.1
をかけます。
ステップ 1.2.4.2.1.6.2
をかけます。
ステップ 1.2.4.2.1.7
をかけます。
ステップ 1.2.4.2.2
をたし算します。
ステップ 1.2.5
、およびの値を頂点形に代入します。
ステップ 1.3
は新しい右辺と等しいとします。
ステップ 2
頂点形、、を利用しての値を求めます。
ステップ 3
頂点を求めます。
ステップ 4