三角関数 例

恒等式を利用し三角関数を求める tan(theta)=-8/15 , cos(theta)<0
,
ステップ 1
余弦関数は第二象限と第三象限で負です。正切関数は第二象限と第四象限で負です。の解の集合は、両集合で求めた唯一の象限なので、第二象限に制限されます。
解は第二象限にあります。
ステップ 2
正接の定義を利用して単位円直角三角形の既知の辺を求めます。象限は、それぞれの値の符号を決定します。
ステップ 3
単位円の三角形の斜辺を求めます。対辺と隣接辺が分かっているので、ピタゴラスの定理を利用して残りの辺を求めます。
ステップ 4
方程式の既知数を置き換えます。
ステップ 5
根の内側を簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
乗します。
斜辺
ステップ 5.2
乗します。
斜辺
ステップ 5.3
をたし算します。
斜辺
ステップ 5.4
に書き換えます。
斜辺
ステップ 5.5
正の実数と仮定して、累乗根の下から項を取り出します。
斜辺
斜辺
ステップ 6
正弦の値を求めます。
タップして手順をさらに表示してください…
ステップ 6.1
正弦の定義を利用しての値を求めます。
ステップ 6.2
既知数に代入します。
ステップ 7
余弦の値を求めます。
タップして手順をさらに表示してください…
ステップ 7.1
余弦の定義を利用しての値を求めます。
ステップ 7.2
既知数に代入します。
ステップ 7.3
分数の前に負数を移動させます。
ステップ 8
余接の値を求めます。
タップして手順をさらに表示してください…
ステップ 8.1
余接の定義を利用しての値を求めます。
ステップ 8.2
既知数に代入します。
ステップ 8.3
分数の前に負数を移動させます。
ステップ 9
正割の値を求めます。
タップして手順をさらに表示してください…
ステップ 9.1
正割の定義を利用しての値を求めます。
ステップ 9.2
既知数に代入します。
ステップ 9.3
分数の前に負数を移動させます。
ステップ 10
余割の値を求めます。
タップして手順をさらに表示してください…
ステップ 10.1
余割の定義を利用しての値を求めます。
ステップ 10.2
既知数に代入します。
ステップ 11
各三角関数の値の解です。