問題を入力...
三角関数 例
ステップ 1
方程式の両辺の逆正弦をとり、正弦の中からを取り出します。
ステップ 2
ステップ 2.1
の厳密値はです。
ステップ 3
正弦関数は、第一象限と第二象限で正となります。2番目の解を求めるには、から参照角を引き、第二象限で解を求めます。
ステップ 4
からを引きます。
ステップ 5
ステップ 5.1
関数の期間はを利用して求めることができます。
ステップ 5.2
周期の公式のをで置き換えます。
ステップ 5.3
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 5.4
をで割ります。
ステップ 6
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
ステップ 7
答えをまとめます。
、任意の整数
ステップ 8
各根を利用して検定区間を作成します。
ステップ 9
ステップ 9.1
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 9.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 9.1.2
を元の不等式ので置き換えます。
ステップ 9.1.3
左辺は右辺より小さくありません。つまり、与えられた文は偽です。
偽
偽
ステップ 9.2
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 9.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 9.2.2
を元の不等式ので置き換えます。
ステップ 9.2.3
左辺は右辺より小さいです。つまり、与えられた文は常に真です。
真
真
ステップ 9.3
区間を比較して、どちらが元の不等式を満たすか判定します。
偽
真
偽
真
ステップ 10
解はすべての真の区間からなります。
、任意の整数
ステップ 11