三角関数 例

すべての複素解を求める cot(x/2)=0
ステップ 1
方程式の両辺の逆余接をとり、余接の中からを取り出します。
ステップ 2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
の厳密値はです。
ステップ 3
方程式の各辺にある式に同じ分母があるので、分子は等しくなければなりません。
ステップ 4
余接関数は、第一象限と第三象限で正となります。2番目の解を求めるには、から参照角を足し、第四象限で解を求めます。
ステップ 5
について解きます。
タップして手順をさらに表示してください…
ステップ 5.1
方程式の両辺にを掛けます。
ステップ 5.2
方程式の両辺を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.1.1.1
共通因数を約分します。
ステップ 5.2.1.1.2
式を書き換えます。
ステップ 5.2.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1.1
を公分母のある分数として書くために、を掛けます。
ステップ 5.2.2.1.2
項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1.2.1
をまとめます。
ステップ 5.2.2.1.2.2
公分母の分子をまとめます。
ステップ 5.2.2.1.2.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1.2.3.1
共通因数を約分します。
ステップ 5.2.2.1.2.3.2
式を書き換えます。
ステップ 5.2.2.1.3
の左に移動させます。
ステップ 5.2.2.1.4
をたし算します。
ステップ 6
の周期を求めます。
タップして手順をさらに表示してください…
ステップ 6.1
関数の期間はを利用して求めることができます。
ステップ 6.2
周期の公式ので置き換えます。
ステップ 6.3
は約。正の数なので絶対値を削除します
ステップ 6.4
分子に分母の逆数を掛けます。
ステップ 6.5
の左に移動させます。
ステップ 7
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
ステップ 8
答えをまとめます。
、任意の整数