問題を入力...
三角関数 例
ステップ 1
ステップ 1.1
方程式の両辺からを引きます。
ステップ 1.2
の各項をで割り、簡約します。
ステップ 1.2.1
の各項をで割ります。
ステップ 1.2.2
左辺を簡約します。
ステップ 1.2.2.1
の共通因数を約分します。
ステップ 1.2.2.1.1
共通因数を約分します。
ステップ 1.2.2.1.2
式を書き換えます。
ステップ 1.2.2.2
の共通因数を約分します。
ステップ 1.2.2.2.1
共通因数を約分します。
ステップ 1.2.2.2.2
をで割ります。
ステップ 1.2.3
右辺を簡約します。
ステップ 1.2.3.1
分数の前に負数を移動させます。
ステップ 2
式が未定義である場所を求めます。
ステップ 3
ステップ 3.1
極限を求めます。
ステップ 3.1.1
の項はに対して一定なので、極限の外に移動させます。
ステップ 3.1.2
の項はに対して一定なので、極限の外に移動させます。
ステップ 3.2
分子が実数に近づき、分母が有界でないので、分数はに近づきます。
ステップ 3.3
にをかけます。
ステップ 4
水平漸近線のリスト:
ステップ 5
分子の次数が分母の次数以下なので、斜めの漸近線はありません。
斜めの漸近線がありません
ステップ 6
すべての漸近線の集合です。
垂直漸近線:
水平漸近線:
斜めの漸近線がありません
ステップ 7