三角関数 例

逆元を求める f(t)=3e^(0.1t)
ステップ 1
を方程式で書きます。
ステップ 2
変数を入れ替えます。
ステップ 3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.1
方程式をとして書き換えます。
ステップ 3.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
の各項をで割ります。
ステップ 3.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.1
共通因数を約分します。
ステップ 3.2.2.1.2
で割ります。
ステップ 3.3
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 3.4
左辺を展開します。
タップして手順をさらに表示してください…
ステップ 3.4.1
を対数の外に移動させて、を展開します。
ステップ 3.4.2
の自然対数はです。
ステップ 3.4.3
をかけます。
ステップ 3.5
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.5.1
の各項をで割ります。
ステップ 3.5.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.5.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.5.2.1.1
共通因数を約分します。
ステップ 3.5.2.1.2
で割ります。
ステップ 3.5.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.5.3.1
を掛けます。
ステップ 3.5.3.2
で因数分解します。
ステップ 3.5.3.3
分数を分解します。
ステップ 3.5.3.4
で割ります。
ステップ 3.5.3.5
で割ります。
ステップ 4
Replace with to show the final answer.
ステップ 5
の逆か確認します。
タップして手順をさらに表示してください…
ステップ 5.1
逆を確認するために、か確認します。
ステップ 5.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 5.2.1
合成結果関数を立てます。
ステップ 5.2.2
の値を代入し、の値を求めます。
ステップ 5.2.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.3.1
共通因数を約分します。
ステップ 5.2.3.2
で割ります。
ステップ 5.2.4
対数の法則を利用して指数の外にを移動します。
ステップ 5.2.5
の自然対数はです。
ステップ 5.2.6
をかけます。
ステップ 5.2.7
を掛けます。
タップして手順をさらに表示してください…
ステップ 5.2.7.1
をかけます。
ステップ 5.2.7.2
をかけます。
ステップ 5.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 5.3.1
合成結果関数を立てます。
ステップ 5.3.2
の値を代入し、の値を求めます。
ステップ 5.3.3
対数の中のを移動させてを簡約します。
ステップ 5.3.4
対数の中のを移動させてを簡約します。
ステップ 5.3.5
指数関数と対数関数は逆関数です。
ステップ 5.3.6
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 5.3.6.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 5.3.6.2
をかけます。
ステップ 5.3.7
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.3.7.1
共通因数を約分します。
ステップ 5.3.7.2
式を書き換えます。
ステップ 5.4
なので、の逆です。