問題を入力...
三角関数 例
ステップ 1
方程式の各項をで割ります。
ステップ 2
をに変換します。
ステップ 3
ステップ 3.1
共通因数を約分します。
ステップ 3.2
式を書き換えます。
ステップ 4
方程式の両辺の逆正切をとり、正切の中からを取り出します。
ステップ 5
ステップ 5.1
の厳密値はです。
ステップ 6
正接関数は、第一象限と第三象限で正となります。2番目の解を求めるには、から参照角を足し、第四象限で解を求めます。
ステップ 7
ステップ 7.1
を公分母のある分数として書くために、を掛けます。
ステップ 7.2
分数をまとめます。
ステップ 7.2.1
とをまとめます。
ステップ 7.2.2
公分母の分子をまとめます。
ステップ 7.3
分子を簡約します。
ステップ 7.3.1
をの左に移動させます。
ステップ 7.3.2
とをたし算します。
ステップ 8
ステップ 8.1
関数の期間はを利用して求めることができます。
ステップ 8.2
周期の公式のをで置き換えます。
ステップ 8.3
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 8.4
をで割ります。
ステップ 9
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
ステップ 10
答えをまとめます。
、任意の整数
ステップ 11
各根を利用して検定区間を作成します。
ステップ 12
ステップ 12.1
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 12.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 12.1.2
を元の不等式ので置き換えます。
ステップ 12.1.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
True
True
ステップ 12.2
区間を比較して、どちらが元の不等式を満たすか判定します。
真
真
ステップ 13
解はすべての真の区間からなります。
、任意の整数
ステップ 14