三角関数 例

グラフ化する 4x+2y+2=24
ステップ 1
について解きます。
タップして手順をさらに表示してください…
ステップ 1.1
を含まないすべての項を方程式の右辺に移動させます。
タップして手順をさらに表示してください…
ステップ 1.1.1
方程式の両辺からを引きます。
ステップ 1.1.2
方程式の両辺からを引きます。
ステップ 1.1.3
からを引きます。
ステップ 1.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1
の各項をで割ります。
ステップ 1.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.2.1.1
共通因数を約分します。
ステップ 1.2.2.1.2
で割ります。
ステップ 1.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.1.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.3.1.1.1
で因数分解します。
ステップ 1.2.3.1.1.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.3.1.1.2.1
で因数分解します。
ステップ 1.2.3.1.1.2.2
共通因数を約分します。
ステップ 1.2.3.1.1.2.3
式を書き換えます。
ステップ 1.2.3.1.1.2.4
で割ります。
ステップ 1.2.3.1.2
で割ります。
ステップ 2
傾き切片型を利用してy切片を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
傾き切片型はです。ここでが傾き、がy切片です。
ステップ 2.2
を利用しての値を求めます。
ステップ 2.3
直線の傾きはの値で、y切片はの値です。
傾き:
y切片:
傾き:
y切片:
ステップ 3
2点を利用して任意の直線はグラフ化できます。値2つを選択し、方程式に代入し、対応する値を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
の値を表を作成します。
ステップ 4
傾きとy切片、または点を利用して直線をグラフにします。
傾き:
y切片:
ステップ 5