問題を入力...
三角関数 例
ステップ 1
ステップ 1.1
を因数分解します。
ステップ 1.2
をに書き換えます。
ステップ 2
ステップ 2.1
をに書き換えます。
ステップ 2.2
をに書き換えます。
ステップ 2.3
を乗します。
ステップ 3
1のすべての数の累乗は1です。
ステップ 4
にをかけます。
ステップ 5
をに書き換えます。
ステップ 6
複素数の三角法の式です。ここで、は絶対値、は複素数平面上にできる角です。
ステップ 7
複素数の係数は、複素数平面上の原点からの距離です。
ならば
ステップ 8
との実際の値を代入します。
ステップ 9
ステップ 9.1
を正数乗し、を得ます。
ステップ 9.2
を乗します。
ステップ 9.3
とをたし算します。
ステップ 9.4
のいずれの根はです。
ステップ 10
複素平面上の点の角は、複素部分の実部分に対する逆正切です。
ステップ 11
の逆正接が第二象限で角を作るので、角の値はです。
ステップ 12
との値を代入します。