三角関数 例

定義域を求める f(x) = square root of x^2+8x
ステップ 1
の被開数を以上として、式が定義である場所を求めます。
ステップ 2
について解きます。
タップして手順をさらに表示してください…
ステップ 2.1
不等式を方程式に変換します。
ステップ 2.2
で因数分解します。
タップして手順をさらに表示してください…
ステップ 2.2.1
で因数分解します。
ステップ 2.2.2
で因数分解します。
ステップ 2.2.3
で因数分解します。
ステップ 2.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.4
に等しいとします。
ステップ 2.5
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 2.5.1
に等しいとします。
ステップ 2.5.2
方程式の両辺からを引きます。
ステップ 2.6
最終解はを真にするすべての値です。
ステップ 2.7
各根を利用して検定区間を作成します。
ステップ 2.8
各区間から試験値を選び、この値を元の不等式に代入して、どの区間が不等式を満たすか判定します。
タップして手順をさらに表示してください…
ステップ 2.8.1
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 2.8.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 2.8.1.2
を元の不等式ので置き換えます。
ステップ 2.8.1.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
ステップ 2.8.2
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 2.8.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 2.8.2.2
を元の不等式ので置き換えます。
ステップ 2.8.2.3
左辺は右辺より小さいです。つまり、与えられた文は偽です。
ステップ 2.8.3
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 2.8.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 2.8.3.2
を元の不等式ので置き換えます。
ステップ 2.8.3.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
ステップ 2.8.4
区間を比較して、どちらが元の不等式を満たすか判定します。
ステップ 2.9
解はすべての真の区間からなります。
または
または
ステップ 3
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法:
ステップ 4