問題を入力...
三角関数 例
ステップ 1
右辺から始めます。
ステップ 2
ステップ 2.1
商の恒等式を利用してを正弦と余弦で書きます。
ステップ 2.2
商の恒等式を利用してを正弦と余弦で書きます。
ステップ 2.3
商の恒等式を利用してを正弦と余弦で書きます。
ステップ 2.4
商の恒等式を利用してを正弦と余弦で書きます。
ステップ 3
ステップ 3.1
Multiply the numerator and denominator of the fraction by .
ステップ 3.1.1
にをかけます。
ステップ 3.1.2
まとめる。
ステップ 3.2
分配則を当てはめます。
ステップ 3.3
約分で簡約します。
ステップ 3.3.1
の共通因数を約分します。
ステップ 3.3.1.1
をで因数分解します。
ステップ 3.3.1.2
共通因数を約分します。
ステップ 3.3.1.3
式を書き換えます。
ステップ 3.3.2
の共通因数を約分します。
ステップ 3.3.2.1
の先頭の負を分子に移動させます。
ステップ 3.3.2.2
共通因数を約分します。
ステップ 3.3.2.3
式を書き換えます。
ステップ 3.4
分母を簡約します。
ステップ 3.4.1
をで因数分解します。
ステップ 3.4.1.1
をで因数分解します。
ステップ 3.4.1.2
をで因数分解します。
ステップ 3.4.1.3
をで因数分解します。
ステップ 3.4.2
にをかけます。
ステップ 3.4.3
を公分母をもつ分数で書きます。
ステップ 3.4.4
公分母の分子をまとめます。
ステップ 3.4.5
指数をまとめます。
ステップ 3.4.5.1
とをまとめます。
ステップ 3.4.5.2
とをまとめます。
ステップ 3.4.6
今日数因数で約分することで式を約分します。
ステップ 3.4.6.1
共通因数を約分します。
ステップ 3.4.6.2
式を書き換えます。
ステップ 3.4.7
の共通因数を約分します。
ステップ 3.4.7.1
共通因数を約分します。
ステップ 3.4.7.2
をで割ります。
ステップ 3.5
の因数を並べ替えます。
ステップ 4
ステップ 4.1
をで因数分解します。
ステップ 4.2
をで因数分解します。
ステップ 4.3
をで因数分解します。
ステップ 4.4
をに書き換えます。
ステップ 4.5
分数の前に負数を移動させます。
ステップ 5
をに書き換えます。
ステップ 6
両辺が等しいことが示されているので、この方程式は恒等式です。
は公式です