三角関数 例

簡略化 (12sin(x)^2+15sin(x)+3)/(3sin(x)^2+9sin(x)+6)
ステップ 1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1
で因数分解します。
ステップ 1.2
で因数分解します。
ステップ 1.3
で因数分解します。
ステップ 1.4
で因数分解します。
ステップ 1.5
で因数分解します。
ステップ 1.6
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.6.1
で因数分解します。
ステップ 1.6.2
で因数分解します。
ステップ 1.6.3
で因数分解します。
ステップ 1.6.4
で因数分解します。
ステップ 1.6.5
で因数分解します。
ステップ 1.6.6
共通因数を約分します。
ステップ 1.6.7
式を書き換えます。
ステップ 2
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
とします。に代入します。
ステップ 2.2
群による因数分解。
タップして手順をさらに表示してください…
ステップ 2.2.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
で因数分解します。
ステップ 2.2.1.2
プラスに書き換える
ステップ 2.2.1.3
分配則を当てはめます。
ステップ 2.2.1.4
をかけます。
ステップ 2.2.2
各群から最大公約数を因数分解します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
前の2項と後ろの2項をまとめます。
ステップ 2.2.2.2
各群から最大公約数を因数分解します。
ステップ 2.2.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 2.3
のすべての発生をで置き換えます。
ステップ 3
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
とします。に代入します。
ステップ 3.2
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 3.2.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 3.2.2
この整数を利用して因数分解の形を書きます。
ステップ 3.3
のすべての発生をで置き換えます。
ステップ 4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1
共通因数を約分します。
ステップ 4.2
式を書き換えます。