問題を入力...
三角関数 例
ステップ 1
方程式の両辺の逆正弦をとり、正弦の中からを取り出します。
ステップ 2
ステップ 2.1
の厳密値はです。
ステップ 3
方程式の各辺にある式に同じ分母があるので、分子は等しくなければなりません。
ステップ 4
正弦関数は、第三象限と第四象限で負となります。2番目の解を求めるには、から解を引き、参照角を求めます。次に、この参照角をに足し、第三象限で解を求めます。
ステップ 5
ステップ 5.1
からを引きます。
ステップ 5.2
の結果の角度は正で、より小さく、と隣接します。
ステップ 5.3
方程式の各辺にある式に同じ分母があるので、分子は等しくなければなりません。
ステップ 6
ステップ 6.1
関数の期間はを利用して求めることができます。
ステップ 6.2
周期の公式のをで置き換えます。
ステップ 6.3
は約。正の数なので絶対値を削除します
ステップ 6.4
分子に分母の逆数を掛けます。
ステップ 6.5
にをかけます。
ステップ 7
ステップ 7.1
をに足し、正の角を求めます。
ステップ 7.2
からを引きます。
ステップ 7.3
新しい角をリストします。
ステップ 8
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
ステップ 9
答えをまとめます。
、任意の整数