問題を入力...
三角関数 例
ステップ 1
ステップ 1.1
の各項をで割ります。
ステップ 1.2
左辺を簡約します。
ステップ 1.2.1
の共通因数を約分します。
ステップ 1.2.1.1
共通因数を約分します。
ステップ 1.2.1.2
をで割ります。
ステップ 1.3
右辺を簡約します。
ステップ 1.3.1
との共通因数を約分します。
ステップ 1.3.1.1
をで因数分解します。
ステップ 1.3.1.2
共通因数を約分します。
ステップ 1.3.1.2.1
をで因数分解します。
ステップ 1.3.1.2.2
共通因数を約分します。
ステップ 1.3.1.2.3
式を書き換えます。
ステップ 2
方程式の両辺の逆余接をとり、余接の中からを取り出します。
ステップ 3
ステップ 3.1
の値を求めます。
ステップ 4
ステップ 4.1
方程式の両辺からを引きます。
ステップ 4.2
からを引きます。
ステップ 5
余接関数は、第一象限と第三象限で正となります。2番目の解を求めるには、から参照角を足し、第四象限で解を求めます。
ステップ 6
ステップ 6.1
とをたし算します。
ステップ 6.2
を含まないすべての項を方程式の右辺に移動させます。
ステップ 6.2.1
方程式の両辺からを引きます。
ステップ 6.2.2
からを引きます。
ステップ 7
ステップ 7.1
関数の期間はを利用して求めることができます。
ステップ 7.2
周期の公式のをで置き換えます。
ステップ 7.3
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 7.4
をで割ります。
ステップ 8
ステップ 8.1
をに足し、正の角を求めます。
ステップ 8.2
10進法の概算で置き換えます。
ステップ 8.3
からを引きます。
ステップ 8.4
新しい角をリストします。
ステップ 9
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
ステップ 10
とをにまとめます。
、任意の整数