問題を入力...
三角関数 例
ステップ 1
方程式の両辺の逆正切をとり、正切の中からを取り出します。
ステップ 2
ステップ 2.1
とをまとめます。
ステップ 3
ステップ 3.1
の厳密値はです。
ステップ 4
分子を0に等しくします。
ステップ 5
正接関数は、第一象限と第三象限で正となります。2番目の解を求めるには、から参照角を足し、第四象限で解を求めます。
ステップ 6
ステップ 6.1
方程式の両辺にを掛けます。
ステップ 6.2
方程式の両辺を簡約します。
ステップ 6.2.1
左辺を簡約します。
ステップ 6.2.1.1
の共通因数を約分します。
ステップ 6.2.1.1.1
共通因数を約分します。
ステップ 6.2.1.1.2
式を書き換えます。
ステップ 6.2.2
右辺を簡約します。
ステップ 6.2.2.1
とをたし算します。
ステップ 7
ステップ 7.1
関数の期間はを利用して求めることができます。
ステップ 7.2
周期の公式のをで置き換えます。
ステップ 7.3
は約。正の数なので絶対値を削除します
ステップ 7.4
分子に分母の逆数を掛けます。
ステップ 7.5
をの左に移動させます。
ステップ 8
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
ステップ 9
答えをまとめます。
、任意の整数