問題を入力...
三角関数 例
ステップ 1
任意のについて、垂直漸近線がで発生します。ここでは整数です。の基本周期を使って、の垂直漸近線を求めます。の正割関数の内側をと等しくし、の垂直漸近線が発生する場所を求めます。
ステップ 2
ステップ 2.1
方程式の両辺からを引きます。
ステップ 2.2
を公分母のある分数として書くために、を掛けます。
ステップ 2.3
の適した因数を掛けて、各式をを公分母とする式で書きます。
ステップ 2.3.1
にをかけます。
ステップ 2.3.2
にをかけます。
ステップ 2.4
公分母の分子をまとめます。
ステップ 2.5
分子を簡約します。
ステップ 2.5.1
にをかけます。
ステップ 2.5.2
からを引きます。
ステップ 2.6
分数の前に負数を移動させます。
ステップ 3
正割関数の中をと等しくします。
ステップ 4
ステップ 4.1
方程式の両辺からを引きます。
ステップ 4.2
を公分母のある分数として書くために、を掛けます。
ステップ 4.3
の適した因数を掛けて、各式をを公分母とする式で書きます。
ステップ 4.3.1
にをかけます。
ステップ 4.3.2
にをかけます。
ステップ 4.4
公分母の分子をまとめます。
ステップ 4.5
分子を簡約します。
ステップ 4.5.1
にをかけます。
ステップ 4.5.2
からを引きます。
ステップ 5
の基本周期はで発生し、ここでとは垂直漸近線です。
ステップ 6
ステップ 6.1
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 6.2
をで割ります。
ステップ 7
の垂直漸近線は、、およびすべてので発生し、ここでは整数です。これは期間の半分です。
ステップ 8
正割のみに垂直漸近線があります。
水平漸近線がありません
斜めの漸近線がありません
垂直漸近線:が整数である
ステップ 9