問題を入力...
三角関数 例
ステップ 1
方程式の両辺の逆余接をとり、余接の中からを取り出します。
ステップ 2
ステップ 2.1
の厳密値はです。
ステップ 3
ステップ 3.1
の各項をで割ります。
ステップ 3.2
左辺を簡約します。
ステップ 3.2.1
の共通因数を約分します。
ステップ 3.2.1.1
共通因数を約分します。
ステップ 3.2.1.2
をで割ります。
ステップ 3.3
右辺を簡約します。
ステップ 3.3.1
分子に分母の逆数を掛けます。
ステップ 3.3.2
を掛けます。
ステップ 3.3.2.1
にをかけます。
ステップ 3.3.2.2
にをかけます。
ステップ 4
余接関数は、第一象限と第三象限で正となります。2番目の解を求めるには、から参照角を足し、第四象限で解を求めます。
ステップ 5
ステップ 5.1
簡約します。
ステップ 5.1.1
を公分母のある分数として書くために、を掛けます。
ステップ 5.1.2
とをまとめます。
ステップ 5.1.3
公分母の分子をまとめます。
ステップ 5.1.4
とをたし算します。
ステップ 5.1.4.1
とを並べ替えます。
ステップ 5.1.4.2
とをたし算します。
ステップ 5.2
の各項をで割り、簡約します。
ステップ 5.2.1
の各項をで割ります。
ステップ 5.2.2
左辺を簡約します。
ステップ 5.2.2.1
の共通因数を約分します。
ステップ 5.2.2.1.1
共通因数を約分します。
ステップ 5.2.2.1.2
をで割ります。
ステップ 5.2.3
右辺を簡約します。
ステップ 5.2.3.1
分子に分母の逆数を掛けます。
ステップ 5.2.3.2
の共通因数を約分します。
ステップ 5.2.3.2.1
をで因数分解します。
ステップ 5.2.3.2.2
共通因数を約分します。
ステップ 5.2.3.2.3
式を書き換えます。
ステップ 6
ステップ 6.1
関数の期間はを利用して求めることができます。
ステップ 6.2
周期の公式のをで置き換えます。
ステップ 6.3
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 7
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
ステップ 8
答えをまとめます。
、任意の整数
ステップ 9
ステップ 9.1
の偏角をに等しいとして、式が未定義である場所を求めます。
、任意の整数
ステップ 9.2
の各項をで割り、簡約します。
ステップ 9.2.1
の各項をで割ります。
ステップ 9.2.2
左辺を簡約します。
ステップ 9.2.2.1
の共通因数を約分します。
ステップ 9.2.2.1.1
共通因数を約分します。
ステップ 9.2.2.1.2
をで割ります。
ステップ 9.3
定義域は式が定義になるのすべての値です。
、の任意の整数
、の任意の整数
ステップ 10
各根を利用して検定区間を作成します。
ステップ 11
ステップ 11.1
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 11.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 11.1.2
を元の不等式ので置き換えます。
ステップ 11.1.3
左辺は右辺より小さくありません。つまり、与えられた文は偽です。
False
False
ステップ 11.2
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 11.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 11.2.2
を元の不等式ので置き換えます。
ステップ 11.2.3
左辺は右辺より小さいです。つまり、与えられた文は常に真です。
True
True
ステップ 11.3
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 11.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 11.3.2
を元の不等式ので置き換えます。
ステップ 11.3.3
左辺は右辺より小さくありません。つまり、与えられた文は偽です。
False
False
ステップ 11.4
区間を比較して、どちらが元の不等式を満たすか判定します。
偽
真
偽
偽
真
偽
ステップ 12
解はすべての真の区間からなります。
、任意の整数
ステップ 13